Cover image for Food Biosensors.
Food Biosensors.
ISBN:
9781782623908
Title:
Food Biosensors.
Author:
Ahmed, Minhaz Uddin.
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (541 pages)
Series:
Food Chemistry, Function and Analysis ; v.1

Food Chemistry, Function and Analysis
Contents:
Cover -- Food Biosensors -- Preface -- Contents -- Chapter 1 - Introduction to Food Biosensors -- 1.1 Overview -- 1.2 Receptors for Biosensing -- 1.2.1 Natural Receptors -- 1.2.1.1 Enzyme-Based Bioreceptors -- 1.2.1.2 Antibodies as Bioreceptors -- 1.2.1.3 Nucleic Acids -- 1.2.1.4 Whole Cells as Receptors -- 1.2.2 Engineered Receptors -- 1.2.2.1 Aptamers -- 1.2.2.2 Synthetic Peptides as Sensing Receptors -- 1.2.2.3 Molecularly Imprinted Polymers -- 1.3 Transducers -- 1.3.1 Electrochemical Techniques -- 1.3.1.1 Amperometry -- 1.3.1.2 Voltammetry -- 1.3.1.3 Potentiometry -- 1.3.1.4 Impedance Detection -- 1.3.2 Optical Techniques -- 1.3.2.1 Surface Plasmon Resonance -- 1.3.3 Mass-Sensitive Techniques -- 1.3.3.1 Quartz Crystal Microbalance -- 1.3.3.2 Surface Wave Acoustic Sensing -- 1.3.4 Thermal Techniques -- 1.4 Biosensors as Food Analytical Tool: An Emerging Trend -- Acknowledgements -- References -- Chapter 2 - Innovative Tools with Miniaturized Devices for Food Biosensing -- 2.1 Introduction -- 2.2 Innovative Tools for the Analysis of Foodstuffs -- 2.2.1 Pesticides -- 2.2.1.1 Inhibition Assays -- 2.2.1.2 Organophosphorus Hydrolase Assays -- 2.2.1.3 Aptamers -- 2.2.2 Heavy Metals -- 2.2.3 Pathogens -- 2.2.4 Toxins -- 2.2.5 Adulteration and Freshness of Foodstuffs -- 2.3 Miniaturization in Food Sensing -- 2.3.1 Miniaturized Systems for Food Quality Control -- 2.3.2 Food Biosensing in Developing Regions -- 2.4 Perspectives -- References -- Chapter 3 - Glucose, Glutamate, and Lactate Sensors for Measuring Food Components -- 3.1 Introduction -- 3.2 Production and Performance of Microplanar Biosensors -- 3.2.1 Fabrication of Microplanar Electrodes -- 3.2.2 Pretreatment of Electrode, and Preparation of Adhesive Layer and Selectively Permeable Layer -- 3.2.3 Preparation of Enzyme Layer -- 3.2.4 Preparation of Diffusion-Restricting Layer.

3.2.5 Sensor Structure -- 3.3 Glucose Sensor for Brewing of Sake and Other Beverages -- 3.3.1 Purpose -- 3.3.2 Measurement Method -- 3.3.3 Results and Discussion -- 3.3.4 Summary -- 3.4 Glutamate Sensor for Soup Stocks and Other Foods -- 3.4.1 Purpose -- 3.4.2 Measurement Method -- 3.4.3 Results and Discussion -- 3.4.4 Summary -- 3.5 Lactate Sensor for Beverages and Foods -- 3.5.1 Purpose -- 3.5.2 Measurement Method -- 3.5.3 Results and Discussion -- 3.5.4 Summary -- 3.6 Conclusion -- Acknowledgements -- References -- Chapter 4 - Biosensor Platforms for Detecting Target Species in Milk Samples -- 4.1 Introduction -- 4.2 Milk as a Sample -- 4.2.1 Components of Milk -- 4.2.2 Categories and Storage of Milk -- 4.2.3 Common Analytes Targeted in Milk Samples -- 4.2.3.1 Detecting Hormones in Milk Samples -- 4.2.3.2 Detecting Antibiotics in Milk Samples -- 4.2.3.3 Detecting Lactose in Milk Samples -- 4.2.3.4 Detecting Pathogens in Milk Samples -- 4.2.3.5 Detecting Other Contaminants in Milk Samples -- 4.3 Biosensor Platforms for Milk Analysis -- 4.3.1 Optical Biosensors -- 4.3.1.1 Surface Plasmon Resonance Biosensors -- 4.3.2 Electrochemical Biosensors -- 4.3.3 Other Biosensor Platforms -- 4.4 The Milk Matrix -- 4.4.1 Common Sample Pretreatment Methods -- 4.4.1.1 Sample Dilution -- 4.4.1.2 Centrifugation -- 4.4.1.3 Thermal Treatment -- 4.4.1.4 Dialysis and Filtration -- 4.4.1.5 Blocking Compounds -- 4.4.1.6 Addition of Other Compounds -- 4.4.1.7 Inclusion of a Reference Sensor -- 4.4.2 Differences in Observed Matrix Effects -- 4.4.2.1 Matrix Effects for Different Biosensor Platforms -- 4.4.2.2 Different Matrix Effects in Different Samples -- 4.4.3 Comments About Milk Matrix Effects -- 4.5 Discussion and Conclusions -- 4.5.1 Discussion and Future Outlook -- 4.5.2 Summary Points -- References.

Chapter 5 - Bionanotechnology-Based Colorimetric Sensors for Food Analysis -- 5.1 Introduction and General Background -- 5.1.1 Nanotechnology -- 5.2 Working Principles Behind Colorimetric Biosensing -- 5.2.1 Absorbance and the Beer-Lambert Law -- 5.2.2 Color Changes and Pixel Data -- 5.3 Nanomaterials in Colorimetric Biosensing -- 5.3.1 Nanomaterials as Colorimetric Probes -- 5.3.1.1 Aggregation -- 5.3.1.2 Leaching -- 5.3.2 Nanomaterials as Carriers -- 5.3.3 Nanomaterials as Enzyme Mimetics -- 5.4 Applications in Food Safety -- 5.4.1 Detection of Heavy Metals -- 5.4.1.1 Mercury, Hg(ii) -- 5.4.1.2 Lead, Pb(ii) -- 5.4.1.3 Cadmium, Cd(ii) -- 5.4.2 Detection of Antibiotics -- 5.4.2.1 Oxytetracycline -- 5.4.2.2 Sulfadimethoxine, Kanamycin, and Adenosine -- 5.4.3 Detection of DNA -- 5.4.4 Detection of Toxins and Toxicants -- 5.4.4.1 Domoic Acid -- 5.4.4.2 Melamine -- 5.4.4.3 Bisphenol A -- 5.5 Future Trends and Conclusions -- Acknowledgement -- References -- Chapter 6 - An Evanescent Wave Fluorescent Immunosensor for Milk Quality Monitoring -- 6.1 Introduction -- 6.1.1 Potential Milk Contaminants -- 6.1.2 Conventional Methods Used to Monitor Milk Contaminants -- 6.1.3 Applications of Biosensors in Monitoring Milk Contaminants -- 6.2 Evanescent Wave Fluorescent Immunosensor Technology -- 6.2.1 Introduction -- 6.2.2 Principle of Evanescent Waves -- 6.2.3 Transducer Configuration -- 6.2.3.1 Planar Waveguide -- 6.2.3.2 Optical Fiber -- 6.2.3.3 Other Configurations -- 6.2.4 Fluorescence-Based Immunoassay -- 6.3 Instrumentation -- 6.3.1 Planar Waveguide-Based Evanescent Wave Biosensor -- 6.3.2 Fiber-Based Evanescent Wave Biosensor -- 6.4 Chemical Modification and Regeneration of Transducer -- 6.5 Applications of Evanescent Wave Fluorescent Immunosensor in Monitoring Milk Contaminants -- 6.5.1 Optimization of Immunosensor Performance -- 6.5.2 Applications.

6.6 Conclusions -- 6.7 Future Perspectives -- Acknowledgments -- References -- Chapter 7 - Chemiluminescence and Fluorescence Optical Biosensor for the Detection of Aflatoxins in Food -- 7.1 Introduction -- 7.2 Optical Biosensors -- 7.2.1 Principle of Chemiluminescence-Based Immunosensors -- 7.2.2 Principle of Fluorescence-Based Immunosensors -- 7.3 Application in Aflatoxin M1 Analysis -- 7.3.1 Conventional Techniques for Aflatoxin Detection -- 7.3.2 Current Developments in Aflatoxin Detection -- 7.3.2.1 Detection of Aflatoxins Using a Chemiluminescence Technique -- 7.3.2.2 Detection of Aflatoxins Using Fluorescence Technique -- 7.4 Integration of Nanoparticles in Aflatoxin Analysis -- 7.4.1 Integrated Nanoparticle-Based Chemiluminescence and Fluorescence Biosensors -- 7.5 Conclusion and Future Perspective -- Acknowledgments -- References -- Chapter 8 - Colorimetric Biosensors for Bacterial Detection -- 8.1 Introduction -- 8.2 Detection Methods -- 8.2.1 Conventional Methods -- 8.2.2 Rapid Methods -- 8.2.2.1 Colorimetric Biosensor Based on Detection of Methyl Parathion -- 8.2.2.2 Colorimetric Biosensors for Rapid Microorganism Toxicity Assessment in Water -- 8.2.2.3 Colorimetric Biosensor Using Surfactant-Functionalized Polydiacetylene Vesicles -- 8.2.2.4 Colorimetric Biosensors Using Nanomaterials -- 8.2.2.4.1 Gold Nanoparticles.In recent years, the unique properties of gold nanoparticles (AuNPs)38 support their use as novel reporters i... -- 8.2.2.4.2 Magnetic Nanoparticles.A breakthrough in the development of rapid, facile and cost-effective colorimetric detection methods has ... -- 8.3 Use of Colorimetric Biosensors in Other Fields -- 8.4 Future Directions -- References -- Chapter 9 - Nanomaterial-Based Electrochemical Sensors for Highly Sensitive Detection of Foodborne Pathogens -- 9.1 Common Foodborne Pathogens -- 9.1.1 Salmonella spp.

9.1.2 Campylobacter spp -- 9.1.3 Escherichia coli O157:H7 -- 9.1.4 Vibrio cholerae -- 9.1.5 Listeria monocytogenes -- 9.1.6 Shigella spp -- 9.2 Bacterial Detection Methods -- 9.2.1 Conventional Methods -- 9.2.2 Immunology-Based Methods -- 9.2.3 Nucleic Acid-Based Methods -- 9.3 Biosensors -- 9.3.1 Electrochemical Detection Techniques -- 9.3.2 Measurement Using a Fixed Potential -- 9.3.3 Measurement Using a Ramped Potential -- 9.3.4 Measurement Using a Pulsed Potential -- 9.3.5 Anodic Stripping Voltammetry -- 9.4 Electrochemical Biosensors for Food Pathogen Detection -- 9.4.1 Electrochemical DNA Sensors for Food Pathogen Detection -- 9.4.2 Electrochemical Immunosensors for Food Pathogen Detection -- 9.5 Modification of Electrode by Nanoparticles -- 9.5.1 Metal Nanoparticles -- 9.5.2 Carbonaceous Nanomaterials -- 9.6 Use of Nanomaterials as Electrochemical Labels -- 9.6.1 Metallic Nanoparticles -- 9.6.2 Nanocrystals -- 9.6.3 Nanocarriers -- 9.6.4 Other Nanomaterials -- 9.7 Future Prospects -- Acknowledgments -- References -- Chapter 10 - Development of Rapid Electrobiochemical Assays for Food Toxins -- 10.1 Introduction -- 10.2 Simulations and Optimization of Sensor Design -- 10.3 Electrochemical Impedance Spectroscopy -- 10.4 Real-Time Label-Free Electrochemical Assay for Chemotoxins in Food -- 10.4.1 Materials -- 10.4.2 Label-Free Analyte Selective Coating -- 10.4.3 Results and Discussion -- 10.4.4 Adsorption Studies of Phthalates to MIP -- 10.5 Rapid Electrochemical Assay for Food Endotoxins -- 10.5.1 Conventional Methods of Endotoxin Detection -- 10.5.2 Materials and Methods -- 10.5.3 Principal Component Analysis -- 10.5.4 Validation of Sensor Measurement using Standard Chromogenic LAL Endotoxin Test Kit -- 10.6 Rapid Electrochemical Assay for the Detection of Marine Biotoxins -- 10.6.1 Existing Methods -- 10.6.2 Materials and Methods.

10.6.3 Experiments with Seafood Products.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2016
Publication Information:
Cambridge :

Royal Society of Chemistry,

2016.

©2016.