Cover image for Essentials and Applications of Food Engineering.
Essentials and Applications of Food Engineering.
ISBN:
9780429772399
Title:
Essentials and Applications of Food Engineering.
Author:
Anandharamakrishnan, C.
Personal Author:
Physical Description:
1 online resource (803 pages)
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Authors -- 1. Units and Dimensions -- 1.1 The Glossary of Units and Dimensions -- 1.2 Classification of Dimensions -- 1.2.1 Definitions and Applications of Fundamental Dimensions in Food Processing -- 1.2.2 Definitions and Applications of Derived Dimensions in Food Processing -- 1.3 Classification of Unit Systems -- 1.3.1 Absolute Unit System -- 1.3.2 Technical Unit Systems -- 1.3.3 Engineering Unit Systems -- 1.3.4 International Unit System (SI) -- 1.3.4.1 Definitions of Fundamental Units -- 1.3.4.2 Definitions of Supplementary Units -- 1.3.4.3 Definitions of Derived Units -- 1.3.4.4 Prefixes for SI Units -- 1.3.4.5 Guidelines to Write Units -- 1.4 Conversion of Units -- 1.4.1 Procedure for the Determination of Significant Digits and Rounding Off -- 1.4.1.1 Rounding Procedure for Technical Documents or Specifications -- 1.4.1.2 Rounding Practices Used for Packaged Goods in the Commercial Marketplace -- 1.4.1.3 Rounding of Temperature Values -- 1.5 Dimensional Analysis -- 1.5.1 Dimensionless Groups -- 1.5.2 Dimensional Consistency -- 1.5.3 Rayleigh's Theorem of Dimensional Analysis -- 1.5.4 Buckingham's Π (Pi) Theorem of Dimensional Analysis -- 1.5.5 Limitations of the Dimensional Analysis -- 1.6 Problems to Practice -- 1.6.1 Multiple Choice Questions -- 1.6.2 Numerical Problems -- Bibliography -- 2. Material Balance -- 2.1 Terminologies and Definitions -- 2.2 Fundamentals of Material Balance -- 2.3 Classification of Material Balance Equations -- 2.3.1 Steady-State Material Balance -- 2.3.2 Unsteady-State Material Balance -- 2.4 Methodology for Conducting a Material Balance Exercise -- 2.4.1 Data Collection -- 2.4.2 Construction of Block Diagram -- 2.4.3 Selection of Basis and Tie Materials -- 2.4.4 Setting Up the Equations of Material Balance.

2.4.4.1 Overall Mass Balance -- 2.4.4.2 Component Mass Balance -- 2.4.4.3 Recycle and Bypass -- 2.4.5 Solving the Equations of Material Balance -- 2.4.6 Material Balance for a Drying Process -- 2.4.7 Material Balance for a Mixing Process -- 2.4.8 Material Balance for an Evaporation Process -- 2.5 Material Balance for Food Standardization -- 2.6 Application of Material Balance in Food Product Traceability -- 2.7 Problems to Practice -- 2.7.1 Multiple Choice Questions -- 2.7.2 Numerical Problems -- Bibliography -- 3. Energy Balance -- 3.1 Forms of Energy -- 3.1.1 Potential Energy -- 3.1.2 Kinetic Energy -- 3.1.3 Internal Energy -- 3.2 Heat Energy -- 3.2.1 Specific Heat -- 3.2.1.1 Siebel's Model -- 3.2.1.2 Charm's Model -- 3.2.1.3 Heldman and Singh Model -- 3.2.1.4 Choi and Okos Model -- 3.2.2 Enthalpy -- 3.2.2.1 Enthalpy Models for Unfrozen Food -- 3.2.2.2 Enthalpy Models for Frozen Food -- 3.2.3 Heat Balance -- 3.2.3.1 Sensible Heat -- 3.2.3.2 Latent Heat -- 3.3 The Principle of Energy Balance Calculation -- 3.4 The Methodology of Energy Balance Calculation -- 3.5 Steam and Its Properties -- 3.5.1 Steam -- 3.5.2 Formation of Steam -- 3.5.3 Properties of Steam -- 3.5.3.1 Specific Enthalpy of Steam -- 3.5.3.2 Specific Entropy of Steam -- 3.5.3.3 Dryness Fraction of Saturated Steam -- 3.5.3.4 Quality of Steam -- 3.5.3.5 Wetness Fraction of Steam -- 3.5.3.6 Priming -- 3.5.3.7 Density of Steam -- 3.5.3.8 Specific Volume of Steam -- 3.5.4 Steam Table -- 3.5.4.1 Saturated Steam Table (Temperature-Based) -- 3.5.4.2 Saturated Steam Table (Pressure-Based) -- 3.5.4.3 Superheated Steam Table -- 3.5.5 Mollier Diagram -- 3.6 Energy Balance Calculations in Food Processing Plants -- 3.6.1 Spray Drying of Milk (Dairy Industry) -- 3.6.2 Pasteurization of Fruit Juice (Beverage Industry) -- 3.7 Problems to Practice -- 3.7.1 Multiple Choice Questions.

3.7.2 Numerical Problems -- Bibliography -- 4. Fluid Flow -- 4.1 Terminologies of Fluid Flow -- 4.2 Properties of Fluids -- 4.2.1 Mass Density or Density -- 4.2.2 Specific Gravity -- 4.3 The Concept of Viscosity -- 4.3.1 Dynamic Viscosity -- 4.3.1.1 Newtonian and Non-Newtonian Fluids -- 4.3.2 Kinematic Viscosity -- 4.4 Empirical Models Governing the Flow Behavior of Non-Newtonian Fluids -- 4.4.1 Power Law Model -- 4.4.2 Herschel-Bulkley Model -- 4.4.3 Casson Model -- 4.5 Temperature Dependence of Viscosity -- 4.6 Measurement of Viscosity -- 4.6.1 Bostwick Consistometer -- 4.6.2 Capillary Tube Viscometer -- 4.6.3 Rotational Viscometer -- 4.6.3.1 Coaxial Cylinder Viscometer -- 4.6.3.2 Cone and Plate Viscometer -- 4.6.3.3 Parallel Plate Viscometer -- 4.7 Viscosity as a Process and Quality Control Tool in the Food Industry -- 4.7.1 Beer -- 4.7.2 Chocolate -- 4.7.3 Tomato Products -- 4.8 Governing Laws of Fluid Flow -- 4.8.1 Principle of Continuity -- 4.8.2 Bernoulli's Equation -- 4.9 Fluid Flow Regimes -- 4.9.1 The Concept of Reynolds Number -- 4.9.2 Laminar and Turbulent Flow -- 4.10 Flow of Fluid through Pipes -- 4.10.1 Entrance Region and Fully Developed Flow -- 4.10.2 Velocity Profile in the Fully Developed Region -- 4.11 Friction Force during Fluid Flow -- 4.12 Flow Measuring Instruments -- 4.12.1 Manometer -- 4.12.2 Orifice Meter -- 4.12.3 Venturi Meter -- 4.12.4 Rotameter -- 4.13 Pumps -- 4.13.1 Types of Pumps -- 4.13.1.1 Centrifugal Pumps -- 4.13.1.2 Positive Displacement Pumps -- 4.13.2 Selection Criteria for Pumps -- 4.13.3 Energy Requirement of Pumps -- 4.14 Problems to Practice -- 4.14.1 Multiple Choice Questions -- 4.14.2 Numerical Problems -- Bibliography -- 5. Heat Transfer -- 5.1 Theory of Heat Transfer -- 5.1.1 Driving Force for Heat Transfer -- 5.1.2 Resistance to Heat Transfer -- 5.2 Classification of Heat Transfer Processes.

5.2.1 Steady-State Heat Transfer -- 5.2.2 Unsteady-State Heat Transfer -- 5.3 Mechanisms of Heat Transfer -- 5.3.1 Heat Transfer by Conduction -- 5.3.1.1 Fourier's Law of Conductive Heat Transfer -- 5.3.1.2 Unsteady-State Heat Transfer by Conduction -- 5.3.1.3 Thermal Properties of Foods -- 5.3.1.4 Conductive Heat Transfer through a Rectangular Slab -- 5.3.1.5 The Concept of Thermal Resistance -- 5.3.1.6 Conductive Heat Transfer through a Composite Wall -- 5.3.1.7 Conductive Heat Transfer through a Cylinder -- 5.3.1.8 Conductive Heat Transfer through a Composite Cylinder -- 5.3.2 Heat Transfer by Convection -- 5.3.2.1 Newton's Law for Convective Heat Transfer -- 5.3.2.2 Types of Convective Heat Transfer -- 5.3.2.3 Estimation of Convective Heat Transfer Coefficient -- 5.3.2.4 Thermal Resistance in Convective Heat Transfer -- 5.3.2.5 Overall Heat Transfer Coefficient -- 5.3.2.6 Unsteady-State Heat Transfer during Convection -- 5.3.2.7 Heat Exchangers -- 5.3.3 Heat Transfer by Radiation -- 5.3.3.1 Principles of Radiative Heat Transfer -- 5.3.3.2 Laws Governing the Radiative Heat Transfer -- 5.3.3.3 The Concept of View Factor -- 5.4 Problems to Practice -- 5.4.1 Multiple Choice Questions -- 5.4.2 Numerical Problems -- Bibliography -- 6. Mass Transfer -- 6.1 Criteria for the Classification of Mass Transfer Phenomena -- 6.1.1 Phases Involved in Mass Transfer -- 6.1.2 Modes of Mass Transfer -- 6.1.2.1 Diffusive Mass Transfer -- 6.1.2.2 Convective Mass Transfer -- 6.2 Theories of Mass Transfer -- 6.2.1 Two Film Theory -- 6.2.2 Penetration Theory -- 6.2.3 Surface Renewal Theory -- 6.3 Laws of Mass Transfer -- 6.3.1 Raoult's Law -- 6.3.2 Henry's Law -- 6.3.2.1 Applications of Henry's Law -- 6.4 Analogies between Heat, Mass, and Momentum Transfer -- 6.5 Problems to Practice -- 6.5.1 Multiple Choice Questions -- 6.5.2 Numerical Problems -- Bibliography.

7. Psychrometry -- 7.1 The Governing Laws of Psychrometry -- 7.1.1 The Ideal Gas Law (Perfect Gas Equation) -- 7.1.2 Gibbs-Dalton Law of Partial Pressures -- 7.1.3 The First Law of Thermodynamics -- 7.2 The Terminologies of Psychrometry -- 7.3 Properties of the Constituents of Moist Air -- 7.3.1 Properties of Dry Air -- 7.3.2 Properties of Water Vapor -- 7.3.3 Adiabatic Saturation of Air -- 7.4 Psychrometric Chart -- 7.4.1 Components of the Psychrometric Chart -- 7.4.1.1 Lines of Dry-Bulb Temperature -- 7.4.1.2 Lines of Constant Humidity -- 7.4.1.3 Lines of Wet-Bulb Temperature -- 7.4.1.4 Lines of Dew Point Temperature -- 7.4.1.5 Lines of Relative Humidity -- 7.4.1.6 Lines of Constant Enthalpy -- 7.4.1.7 Lines of Constant Specific Volume -- 7.4.2 Methodology for Using the Psychrometric Chart -- 7.4.3 Applications of Psychrometry -- 7.4.3.1 Heating -- 7.4.3.2 Cooling -- 7.4.3.3 Mixing -- 7.4.3.4 Drying -- 7.4.3.5 Heating-Cum-Humidification -- 7.4.3.6 Cooling-Cum-Dehumidification -- 7.4.3.7 Estimation of Wet-Bulb and Outlet Particle Temperatures -- 7.5 Measurement of Psychrometric Properties -- 7.5.1 Psychrometer -- 7.5.2 Optical Dew Point Hygrometer -- 7.5.3 Electric Hygrometer -- 7.6 Problems to Practice -- 7.6.1 Multiple Choice Questions -- 7.6.2 Numerical Problems -- Bibliography -- 8. Fundamentals and Applications of Reaction Kinetics -- 8.1 Glossary of Reaction Kinetics -- 8.2 Classification of Reactors -- 8.2.1 Batch Reactors -- 8.2.2 Continuous Reactors -- 8.2.2.1 Continuous Stirred Tank Reactors -- 8.2.2.2 Plug Flow Reactors -- 8.2.3 Semi-Batch Reactors -- 8.3 Classification of Reactions -- 8.3.1 Zero-Order Reaction -- 8.3.2 First-Order Reaction -- 8.3.3 Second-Order Reaction -- 8.3.4 n[sup(th)] Order Reaction -- 8.4 Temperature Dependence of Reaction Rates -- 8.4.1 Arrhenius Relationship -- 8.4.2 Q[sub(10)] Value -- 8.4.3 z Value.

8.5 Applications of Reaction Kinetics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2019
Publication Information:
Milton :

Chapman and Hall/CRC,

2019.

©2019.