Cover image for Stress Biology of Yeasts and Fungi : Applications for Industrial Brewing and Fermentation.
Stress Biology of Yeasts and Fungi : Applications for Industrial Brewing and Fermentation.
ISBN:
9784431552482
Title:
Stress Biology of Yeasts and Fungi : Applications for Industrial Brewing and Fermentation.
Author:
Takagi, Hiroshi.
Personal Author:
Physical Description:
1 online resource (221 pages)
Contents:
Preface -- Contents -- Part I: Stress Biology of Yeasts -- Chapter 1: The Breeding of Bioethanol-Producing Yeast by Detoxification of Glycolaldehyde, a Novel Fermentation Inhibitor -- 1.1 Background -- 1.2 The Role of Glycolaldehyde as a Fermentation Inhibitor -- 1.2.1 Physiochemical Background of Glycolaldehyde Formation -- 1.2.2 Toxicity of Glycolaldehyde -- 1.2.3 Glycolaldehyde Mediates Yeast Fermentation Inhibition: Effects and Mechanisms -- 1.3 Biological Detoxification of Glycolaldehyde -- 1.3.1 The Role of Oxidoreductase Activity in Reducing the Functional Group of Glycolaldehyde -- 1.3.2 Altering Redox Cofactor Usage to Enhance the Glycolaldehyde Reduction Reaction -- 1.3.2.1 NADH Perturbation in the ADH1-Expressing Strain Limits Glycolaldehyde Reduction -- 1.3.2.2 Role of Gre2 in NADPH-Dependent Glycolaldehyde Reduction -- 1.3.2.3 Activation of the Pentose Phosphate Pathway at High Concentrations of Glycolaldehyde -- 1.3.2.4 The Shift in Redox Cofactor Preference of Glycolaldehyde -- 1.3.2.5 Coexpression of ADH1 and GRE2 in Yeast Cells Creates Better Redox Balance for Glycolaldehyde Reduction Reactions -- 1.4 Metabolic Impact of Redox Cofactor Perturbation Resulting from Glycolaldehyde Reduction -- 1.4.1 Alternative NADPH-Regeneration Pathways Activate in Response to Glycolaldehyde Reduction -- 1.4.2 The Metabolic Costs of Improving Ethanol Yields Through Glycolaldehyde Reduction Reactions Related to Glycerol Formation -- 1.5 Future Challenges -- 1.6 Conclusion -- References -- Chapter 2: Stress Tolerance of Baker's Yeast During Bread-Making Processes -- 2.1 Introduction -- 2.2 Baking-Associated Stresses -- 2.2.1 Freeze-Thaw Stress -- 2.2.2 High-Sucrose Stress -- 2.2.3 Air-Drying Stress -- 2.3 Novel Approach and Mechanism for Baking-Associated Stress Tolerance -- 2.3.1 Omics Approach to Identify the Genes Required for Stress Tolerance.

2.3.2 Nitric Oxide-Mediated Stress-Tolerant Mechanism Found in Yeast -- 2.4 Conclusions and Future Perspective -- References -- Chapter 3: Yeast mRNA Flux During Brewing and Under Ethanol Stress Conditions -- 3.1 mRNA Nuclear Export Mechanism -- 3.2 Selective Nuclear Export of mRNA During Stress Responses -- 3.3 Translational Repression, P-Bodies, and Stress Granules -- 3.4 P-Body and Stress Granule Formation Under Glucose Depletion and Heat-Shock Conditions -- 3.5 mRNA Nuclear Export Under Ethanol Stress Conditions -- 3.6 Localization of HSP mRNAs Under Ethanol Stress -- 3.7 mRNA Transport During Brewing -- 3.8 P-Body and Stress Granule Formation Under Ethanol Stress Conditions -- 3.9 P-Body and Stress Granule Formation During Brewing -- 3.10 Roles of P-Bodies and Stress Granules -- 3.11 Conclusion -- References -- Chapter 4: Mechanism of High Alcoholic Fermentation Ability of Sake Yeast -- 4.1 Introduction -- 4.2 Ethanol Tolerance of Yeasts -- 4.3 Gene Expression Profiles During Alcoholic Fermentation -- 4.4 Defective Stress Responses in Sake Yeast Strains -- 4.4.1 Msn2/4p -- 4.4.2 Hsf1p -- 4.4.3 Rim15p -- 4.5 Closing Remarks -- References -- Chapter 5: Stress Responses of the Yeast Saccharomyces cerevisiae Under High Hydrostatic Pressure -- 5.1 General Effects of High Hydrostatic Pressure on Biological Systems -- 5.2 High Pressure Induces Intracellular Acidification -- 5.3 Tryptophan Availability Is a Limiting Factor for Cell Growth Under High Pressure -- 5.4 Ubiquitin-Dependent Degradation of Tryptophan Permeases in Response to High Pressure -- 5.5 Global Screening of Genes Responsible for Growth Under High Pressure -- 5.6 Resistance of Cells to Lethal Levels of High Pressure -- 5.7 Transcriptional Regulation Under High Pressure -- 5.8 Conclusion -- References.

Chapter 6: Environmental Stresses to Which Yeast Cells Are Exposed During Bioethanol Production from Biomass -- 6.1 Yeast Cells Are Exposed to Various Stresses During Bioethanol Production -- 6.2 Chemical Stresses During Bioethanol Production -- 6.3 Temperature and Oxidative Stresses During Fermentation -- 6.4 Contaminations by Bacteria and Wild Yeast Are Serious Inhibitory Factors -- 6.5 Development of Stress-Tolerant Yeast Strains Useful for Bioethanol Production -- 6.5.1 Screening and Breeding -- 6.5.2 Organic-Acid-Tolerant Yeasts -- 6.5.3 High-Temperature-Tolerant Yeasts -- 6.6 Conclusions -- References -- Chapter 7: Mechanism of Yeast Adaptation to Weak Organic Acid Stress -- 7.1 Introduction -- 7.2 Mechanism of Adaptation to Weak Organic Acids in S. cerevisiae -- 7.2.1 Adaptation Response to Decreased Intracellular pH -- 7.2.2 Adaptation Response to Sorbic Acid and Benzoic Acid Stress -- 7.2.3 Adaptation Response to Acetic Acid Stress -- 7.2.4 Adaptation Response to Lactic Acid Stress -- 7.3 Improvement of Lactic Acid Production Through Enhanced Lactic Acid Resistance -- 7.4 Concluding Remarks -- References -- Chapter 8: Nutrient Stress Responses of the Bottom-­Fermenting Yeast -- 8.1 Introduction -- 8.1.1 Cellular Response to Nonsugar Nutrient Starvation in Bottom-Fermenting Yeast -- 8.1.1.1 Cell Senescence -- 8.1.1.2 Sugar-Induced Cell Death (SICD) -- 8.1.1.3 Pathways Involved in SICD -- 8.1.2 Sugars in the Wort and Fermentative Ability of Bottom-­Fermenting Yeast -- 8.1.3 The Effect of Differences in Sugar on Ethanol Fermentation of Bottom-Fermenting Yeast -- 8.1.4 Effect of Minerals and Vitamins on Alcohol Fermentation -- 8.1.5 Bottom-Fermenting Yeast-Specific Genes and Their Relationship to Environmental Stress Responses -- 8.2 Conclusion -- References -- Part II: Stress Biology of Fungi.

Chapter 9: Unique Metabolic Responses to Hypoxia and Nitric Oxide by Filamentous Fungi -- 9.1 Industrial Applications of Filamentous Fungi -- 9.2 Hypoxic Stress Responses of Filamentous Fungi -- 9.2.1 Nitrogen Metabolism Under Hypoxia -- 9.2.2 Global Metabolic Changes Upon Hypoxia -- 9.3 Nitric Oxide Responses of Aspergillus nidulans -- 9.3.1 Stress Imposed by Reactive Nitrogen Species and Responses of Filamentous Fungi -- 9.3.2 Heme Biosynthesis -- 9.3.3 Nitrosothionein -- 9.4 Future Prospects -- References -- Chapter 10: Cell Wall Biosynthesis in Filamentous Fungi -- 10.1 Introduction -- 10.2 Cell Wall Glycans Shared in Fungi -- 10.2.1 Chitin -- 10.2.2 β-Glucans -- 10.2.3 α-Glucans -- 10.3 Glycans Characteristically Found in Filamentous Fungi -- 10.3.1 Galactomannan -- 10.3.2 Galactosaminogalactan -- 10.4 Cell Wall Proteins -- 10.4.1 Covalently and Nocovalently Attached Wall Proteins -- 10.4.2 N-Glycans and O-Glycans in Glycoproteins -- 10.4.3 Galf -Containing N- and O-Glycans -- 10.5 Stress Response -- 10.5.1 Cell Wall Integrity Signaling Pathway -- 10.5.2 Stress-Sensing Proteins -- 10.5.3 High Osmolarity Glycerol Pathway -- 10.6 Future Perspectives -- References -- Chapter 11: Stress Responses of Koji Mold Cells with Highly Polarized and Multicellular Morphology -- 11.1 Introduction -- 11.2 Stress and Multicellularity in Aspergillus oryzae -- 11.2.1 The Woronin Body, a Unique Organelle That Shuts Down Intercellular Connectivity -- 11.2.2 AoSO Protein Accumulates at the Septal Pore and Protects Against Hyphal Wounding -- 11.2.3 Stress-Responsive Accumulation of AoSO at the Septal Pore -- 11.3 Stress Granule Formation in A. oryzae -- 11.3.1 Spatially Polarized Formation of Stress Granules -- 11.3.2 Identification of a Novel Stress Granule Component AoSO -- 11.4 Conclusion and Perspectives -- References.

Chapter 12: Protein Kinase C of Filamentous Fungi and Its Roles in the Stresses Affecting Hyphal Morphogenesis and Conidiation -- 12.1 Introduction -- 12.2 PKC Signaling Pathway -- 12.2.1 Function of PKC in the Cell Wall Integrity Signaling Pathway -- 12.2.2 Functions of PKC Under Heat Stress -- 12.2.2.1 Germination -- 12.2.2.2 Hyphal Growth -- 12.2.2.3 Asexual Development -- 12.2.3 Other Functions of PKC in Filamentous Fungi -- References -- Chapter 13: Response and Adaptation to Cell Wall Stress and Osmotic Stress in Aspergillus Species -- 13.1 Introduction -- 13.2 Cell Wall Integrity Signaling System of Aspergillus Species -- 13.2.1 Overview of Cell Wall Integrity (CWI) Signaling -- 13.2.2 Cell-Surface Sensors for CWI Signaling in Aspergillus Species -- 13.2.3 Protein Kinase C Pathway in Aspergillus nidulans -- 13.2.4 MAP Kinase Pathway for CWI Signaling in Aspergillus Species -- 13.2.5 Targets of CWI Signaling in Aspergillus Species -- 13.3 Osmotic Stress Signaling in Aspergillus Species -- 13.3.1 Overview of the High Osmolality Glycerol (HOG) Pathway -- 13.3.2 TCS System for Osmotic Stress Signaling in Aspergillus Species -- 13.3.3 HogA/SakA MAPK Cascade in the Osmotic Stress Response in Aspergillus Species -- 13.3.4 Targets of the HOG Pathway in Aspergillus Species -- 13.4 Concluding Remarks -- References.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2015
Publication Information:
Tokyo :

Springer,

2015.

©2015.