Cover image for Food Process Engineering and Technology.
Food Process Engineering and Technology.
ISBN:
9780128120545
Title:
Food Process Engineering and Technology.
Author:
Berk, Zeki.
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (744 pages)
Series:
Food science and technoloy international series
Contents:
Front Cover -- Food Process Engineering and Technology -- Copyright -- Dedication -- Contents -- Introduction -- 1. “Food is Life” -- 2. Food Process Engineering -- 3. The Food Process -- 4. Batch and Continuous Processes -- 5. Process Flow Diagrams -- References -- Further Reading -- Chapter 1: Physical properties of food materials -- 1.1. Introduction -- 1.2. Mass, Volume, and Density -- 1.3. Mechanical Properties -- 1.3.1. Definitions -- 1.3.2. Rheological Models -- 1.4. Thermal Properties -- 1.5. Electrical Properties -- 1.6. Structure -- 1.7. Water Activity -- 1.7.1. The Importance of Water in Foods -- 1.7.2. Water Activity, Definition, and Determination -- 1.7.3. Water Activity: Prediction -- 1.7.4. Water Vapor Sorption Isotherms -- 1.7.5. Water Activity: Effect on Food Quality and Stability -- 1.8. Phase Transition Phenomena in Foods -- 1.8.1. The Glassy State in Foods -- 1.8.2. Glass Transition Temperature -- 1.9. Optical Properties -- 1.10. Surface Properties -- 1.11. Acoustic Properties -- References -- Further Reading -- Chapter 2: Fluid flow -- 2.1. Introduction -- 2.2. Elements of Fluid Mechanics -- 2.2.1. Introduction -- 2.2.2. The Navier-Stokes Equation -- 2.2.3. Viscosity -- 2.2.4. Fluid Flow Regimes -- 2.2.5. Typical Applications of Newtonian Laminar Flow -- 2.2.5.1. Laminar flow in a cylindrical channel (pipe or tube) -- 2.2.5.2. Laminar fluid flow on flat surfaces and channels -- 2.2.5.3. Laminar fluid flow around immersed particles -- 2.2.5.4. Fluid flow through porous media -- 2.2.6. Turbulent Flow -- 2.2.6.1. Turbulent Newtonian fluid flow in a cylindrical channel (tube or pipe) -- 2.2.6.2. Turbulent fluid flow around immersed particles -- 2.3. Flow Properties of Fluids -- 2.3.1. Types of Fluid Flow Behavior -- 2.3.2. Non-Newtonian Fluid Flow in Pipes -- 2.4. Transportation of Fluids.

2.4.1. Energy Relations, The Bernoulli Equation -- 2.4.2. Pumps: Types and Operation -- 2.4.3. Pump Selection -- 2.4.4. Ejectors -- 2.4.5. Piping -- 2.5. Flow of Particulate Solids (Powder Flow) -- 2.5.1. Introduction -- 2.5.2. Flow Properties of Particulate Solids -- 2.5.3. Fluidization -- 2.5.4. Pneumatic Transport -- 2.5.5. Flow of Powders in Storage Bins -- 2.5.6. Caking -- References -- Chapter 3: Heat and mass transfer, basic principles -- 3.1. Introduction -- 3.2. Basic Relations in Transport Phenomena -- 3.2.1. Basic Laws of Transport -- 3.2.2. Mechanisms of Heat and Mass Transfer -- 3.3. Conductive Heat and Mass Transfer -- 3.3.1. The Fourier and Fick Laws -- 3.3.2. Integration of Fourier's and Fick's Laws for Steady-State Conductive Transport -- 3.3.3. Thermal Conductivity, Thermal Diffusivity, and Molecular Diffusivity -- 3.3.3.1. Thermal conductivity and thermal diffusivity -- 3.3.3.2. Molecular (mass) diffusivity, diffusion coefficient -- 3.3.4. Examples of Steady-State Conductive Heat and Mass Transfer Processes -- 3.4. Convective Heat and Mass Transfer -- 3.4.1. Film (or Surface) Heat and Mass Transfer Coefficients -- 3.4.2. Empirical Correlations for Convection Heat and Mass Transfer -- 3.4.3. Steady-State Interphase Mass Transfer -- 3.5. Unsteady-State Heat and Mass Transfer -- 3.5.1. The Second Fourier and Fick Laws -- 3.5.2. Solution of Fourier's Second Law Equation for an Infinite Slab -- 3.5.3. Transient Conduction Transfer in Finite Solids -- 3.5.4. Transient Convective Transfer in a Semiinfinite Body -- 3.5.5. Unsteady-State Convective Transfer -- 3.6. Heat Transfer by Radiation -- 3.6.1. Interaction Between Matter and Thermal Radiation -- 3.6.2. Radiation Heat Exchange Between Surfaces -- 3.6.3. Radiation Combined With Convection -- 3.7. Heat Exchangers -- 3.7.1. Overall Coefficient of Heat Transfer.

3.7.2. Heat Exchange Between Flowing Fluids -- 3.7.3. Fouling -- 3.7.4. Heat Exchangers in the Food Process Industry -- 3.8. Microwave and Radio Frequency (RF) Heating -- 3.8.1. Basic Principles of Microwave and RF Heating -- 3.9. Ohmic Heating -- 3.9.1. Introduction -- 3.9.2. Basic Principles -- 3.9.3. Applications and Equipment -- References -- Further Reading -- Chapter 4: Reaction kinetics -- 4.1. Introduction -- 4.2. Basic Concepts -- 4.2.1. Elementary and Nonelementary Reactions -- 4.2.2. Reaction Order -- 4.2.2.1. Zero-order kinetics -- 4.2.2.2. First-order kinetics -- 4.2.3. Effect of temperature on reaction kinetics -- 4.3. Kinetics of Biological Processes -- 4.3.1. Enzyme-Catalyzed Reactions -- 4.3.2. Growth of Microorganisms -- 4.4. Residence Time and Residence Time Distribution -- 4.4.1. Reactors in Food Processing -- 4.4.2. Residence Time Distribution -- References -- Further Reading -- Chapter 5: Elements of process control -- 5.1. Introduction -- 5.2. Basic Concepts -- 5.3. Basic Control Structures -- 5.3.1. Feedback Control -- 5.3.2. Feed-Forward Control -- 5.3.3. Comparative Merits of Control Strategies -- 5.4. The Block Diagram -- 5.5. Input, Output, and Process Dynamics -- 5.5.1. First-Order Response -- 5.5.2. Second-Order Systems -- 5.6. Control Modes (Control Algorithms) -- 5.6.1. On-Off (Binary) Control -- 5.6.2. Proportional (P) Control -- 5.6.3. Integral (I) Control -- 5.6.4. Proportional-Integral (PI) Control -- 5.6.5. Proportional-Integral-Differential (PID) Control -- 5.6.6. Optimization of Control -- 5.7. Physical Elements of the Control System -- 5.7.1. The Sensors (Measuring Elements) -- 5.7.1.1. Temperature -- 5.7.1.2. Pressure -- 5.7.1.3. Flow rate -- 5.7.1.4. Level -- 5.7.1.5. Color, shape, and size -- 5.7.1.6. Composition -- 5.7.2. The Controllers -- 5.7.3. The Actuators -- References -- Chapter 6: Size reduction.

6.1. Introduction -- 6.2. Particle Size and Particle Size Distribution -- 6.2.1. Defining the Size of a Single Particle -- 6.2.2. Particle Size Distribution in a Population of Particles: Defining a “Mean Particle Size” -- 6.2.3. Mathematical Models of PSD -- 6.2.4. A Note on Particle Shape -- 6.3. Size Reduction of Solids, Basic Principles -- 6.3.1. Mechanism of Size Reduction in Solids -- 6.3.2. Particle Size Distribution After Size Reduction -- 6.3.3. Energy Consumption -- 6.4. Size Reduction of Solids—Equipment and Methods -- 6.4.1. Impact Mills -- 6.4.2. Pressure Mills -- 6.4.3. Attrition Mills -- 6.4.4. Cutters and Choppers -- 6.4.5. The Wheat Milling Process -- References -- Chapter 7: Mixing -- 7.1. Introduction -- 7.2. Mixing of Fluids (Blending) -- 7.2.1. Types of Blenders -- 7.2.2. Flow Patterns in Fluid Mixing -- 7.2.3. Energy Input in Fluid Mixing -- 7.2.4. Mixing Time -- 7.3. Kneading -- 7.4. In-Flow Mixing -- 7.5. Mixing of Particulate Solids -- 7.5.1. Mixing and Segregation -- 7.5.2. Quality of Mixing, The Concept of “Mixedness” -- 7.5.3. Equipment for Mixing Particulate Solids -- 7.6. Homogenization -- 7.6.1. Basic Principles -- 7.6.2. Homogenizers -- 7.7. Foaming -- References -- Chapter 8: Filtration and expression -- 8.1. Introduction -- 8.2. Depth Filtration -- 8.2.1. Mechanisms -- 8.2.2. Rate of Filtration -- 8.2.3. Optimization of the Filtration Cycle -- 8.2.4. Characteristics of Filtration Cakes -- 8.2.5. The Role of Cakes in Filtration -- 8.3. Filtration Equipment -- 8.3.1. Depth Filters -- 8.3.2. Barrier (Surface) Filters -- 8.4. Expression -- 8.4.1. Introduction -- 8.4.2. Mechanisms -- 8.4.3. Applications and Equipment -- References -- Chapter 9: Centrifugation -- 9.1. Introduction -- 9.2. Basic Principles -- 9.2.1. The Continuous Settling Tank -- 9.2.2. From Settling Tank to Tubular Centrifuge.

9.2.3. The Baffled Settling Tank and the Disc-Bowl Centrifuge -- 9.2.4. Liquid-Liquid Separation -- 9.3. Centrifuges -- 9.3.1. Tubular Centrifuges -- 9.3.2. Disc-Bowl Centrifuges -- 9.3.3. Decanter Centrifuges -- 9.3.4. Basket Centrifuges -- 9.4. Cyclones -- References -- Chapter 10: Membrane processes -- 10.1. Introduction -- 10.2. Tangential Filtration -- 10.3. Mass Transfer Through MF and UF Membranes -- 10.3.1. Solvent Transport -- 10.3.2. Solute Transport: Sieving Coefficient and Rejection -- 10.3.3. Concentration Polarization and Gel Polarization -- 10.4. Mass Transfer in Reverse Osmosis -- 10.4.1. Basic Concepts -- 10.4.2. Solvent Transport in Reverse Osmosis -- 10.5. Membrane Systems -- 10.5.1. Membrane Materials -- 10.5.2. Membrane Configurations -- 10.6. Membrane Processes in the Food Industry -- 10.6.1. Microfiltration -- 10.6.2. Ultrafiltration -- 10.6.3. Nanofiltration and Reverse Osmosis -- 10.7. Electrodialysis -- References -- Chapter 11: Extraction -- 11.1. Introduction -- 11.2. Solid-Liquid Extraction (Leaching) -- 11.2.1. Definitions -- 11.2.2. Material Balance -- 11.2.3. Equilibrium -- 11.2.4. Multistage Extraction -- 11.2.5. Stage Efficiency -- 11.2.6. Solid-Liquid Extraction Systems -- 11.2.7. Effect of Processing Conditions on Extraction Performance -- 11.3. Supercritical Fluid Extraction -- 11.3.1. Basic Principles -- 11.3.2. Supercritical Fluids as Solvents -- 11.3.3. Supercritical Extraction Systems -- 11.3.4. Applications -- 11.4. Liquid-Liquid Extraction -- 11.4.1. Principles -- 11.4.2. Applications -- References -- Chapter 12: Adsorption and ion exchange -- 12.1. Introduction -- 12.2. Equilibrium Conditions -- 12.3. Batch Adsorption -- 12.4. Adsorption in Columns -- 12.5. Ion Exchange -- 12.5.1. Basic Principles -- 12.5.2. Properties of Ion Exchangers -- 12.5.3. Water Softening Using Ion Exchange.

12.5.4. Reduction of Acidity in Fruit Juices Using Ion Exchange.
Local Note:
Knovel ACADEMIC - Food Science
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2018
Publication Information:
San Diego :

Elsevier Science & Technology,

2018.

©2018.