Cover image for Aerospace sensors [electronic resource] / Alexander V. Nebylov.
Aerospace sensors [electronic resource] / Alexander V. Nebylov.
ISBN:
9781606500613
Title:
Aerospace sensors [electronic resource] / Alexander V. Nebylov.
Author:
Nebylov, A. V. (Aleksandr Vladimirovich)
Publication Information:
[New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, ©2013.
Physical Description:
1 online resource (xxv, 348 pages) : illustrations.
Series:
Sensors technology series
Contents:
Series preface -- Preface -- Acknowledgments -- About the series editor -- About the editor.

1. Introduction -- 1.1 General considerations -- 1.1.1 Types of aerospace vehicles and missions -- 1.1.2 The role of sensors and control systems in aerospace -- 1.1.3 Specific design criteria for aerospace vehicles and their sensors -- 1.1.4 Physical principles influencing primary aerospace sensor design -- 1.1.5 Reference frames accepted in aviation and astronautics -- 1.2 Characteristics and challenges of the atmospheric environment -- 1.2.1 Components of the earth's atmosphere -- 1.2.2 Stationary models of the atmosphere -- 1.2.3 Anisotropy and variability in the atmosphere -- 1.2.4 Electrical charges in the atmosphere -- 1.2.5 Electromagnetic wave propagation in the atmosphere -- 1.2.6 Geomagnetism -- 1.2.7 The planetary atmosphere -- 1.3 Characteristics and challenges of the space environment -- 1.3.1 General considerations -- 1.3.2 Near-earth space -- 1.3.3 Circumsolar (near-sun) space -- 1.3.4 Matter in space -- 1.3.5 Distances and time scales in deep space -- References.

2. Air pressure-dependent sensors -- 2.1 Basic aircraft instrumentation -- 2.2 Fundamental physical properties of airflow -- 2.2.1 Fundamental airflow physical property definitions -- 2.2.1.1 Pressure -- 2.2.1.2 Air density -- 2.2.1.3 Temperature -- 2.2.1.4 Flow velocity -- 2.2.2 The equation of state for a perfect gas -- 2.2.3 Extension of definitions: total, dynamic, static, and stagnation -- 2.2.4 The speed of sound and mach number -- 2.2.4.1 The speed of sound -- 2.2.4.2 Mach number and compressibility -- 2.2.5 The source of aerodynamic forces -- 2.3 Altitude conventions -- 2.4 Barometric altimeters -- 2.4.1 Theoretical considerations -- 2.4.1.1 The troposphere -- 2.4.1.2 The stratosphere -- 2.4.2 Barometric altimeter principles and construction -- 2.4.3 Barometric altimeter errors -- 2.4.3.1 Methodical errors -- 2.4.3.2 Instrumental errors -- 2.5 Airspeed conventions -- 2.6 The manometric airspeed indicator -- 2.6.1 Manometric airspeed indicator principles and construction -- 2.6.2 Theoretical considerations -- 2.6.2.1 Subsonic incompressible operation -- 2.6.2.2 Subsonic compressible operation -- 2.6.2.3 Supersonic operation -- 2.6.3 Manometric airspeed indicator errors -- 2.6.3.1 Methodical errors -- 2.6.3.2 Instrumental errors -- 2.7 The vertical speed indicator (VSI) -- 2.7.1 VSI principles and construction -- 2.7.2 Theoretical considerations -- 2.7.2.1 Lag rate (time constant) -- 2.7.2.2 Sensitivity to mach number -- 2.7.2.3 Sensitivity to altitude -- 2.7.3 VSI errors -- 2.8 Angles of attack and slip -- 2.8.1 The pivoted vane -- 2.8.2 The differential pressure tube -- 2.8.3 The null-seeking pressure tube -- References -- Appendix.

3. Radar altimeters -- 3.1 Introduction -- 3.1.1 Definitions -- 3.1.2 Altimetry methods -- 3.1.3 General principles of radar altimetry -- 3.1.4 Classification by different features -- 3.1.5 Application and performance characteristics -- 3.1.5.1 Aircraft applications -- 3.1.5.2 Spacecraft applications -- 3.1.5.3 Military applications -- 3.1.5.4 Remote sensing applications -- 3.1.6 Performance characteristics -- 3.2 Pulse radar altimeters -- 3.2.1 Principle of operation -- 3.2.2 Pulse duration -- 3.2.3 Tracking altimeters -- 3.2.4 Design principles -- 3.2.5 Features of altimeters with pulse compression -- 3.2.6 Pulse laser altimetry -- 3.2.7 Some examples -- 3.2.8 Validation -- 3.2.9 Future trends -- 3.3 Continuous wave radar altimeters -- 3.3.1 Principles of continuous wave radar -- 3.3.2 FMCW radar waveforms -- 3.3.3 Design principles and structural features -- 3.3.3.1 Local oscillator automatic tuning -- 3.3.3.2 Single-sideband receiver structure -- 3.3.4 The Doppler effect -- 3.3.5 Alternative measuring devices for FMCW altimeters -- 3.3.6 Accuracy and unambiguous altitude -- 3.3.7 Aviation applications -- 3.4 Phase precise radar altimeters -- 3.4.1 The phase method of range measurement -- 3.4.2 The two-frequency phase method -- 3.4.3 Ambiguity and accuracy in the two-frequency method -- 3.4.4 Phase ambiguity resolution -- 3.4.5 Waveforms -- 3.4.6 Measuring devices and signal processing -- 3.4.7 Remarks on the accuracy of CW and pulse radar altimeters -- 3.5 Radioactive altimeters for space application -- 3.5.1 Motivation and history -- 3.5.2 Physical bases -- 3.5.2.1 Features of radiation -- 3.5.2.2 Generators of photon emission -- 3.5.2.3 Receivers -- 3.5.2.4 Propagation features -- 3.5.3 Principles of operation -- 3.5.4 Radiation dosage -- 3.5.5 Examples of radioisotope altimeters -- References.

4. Autonomous radio sensors for motion parameters -- 4.1 Introduction -- 4.2 Doppler sensors for ground speed and crab angle -- 4.2.1 Physical basis and functions -- 4.2.2 Principle of operation -- 4.2.3 Classification and features of sensors for ground speed and crab angle -- 4.2.4 Generalized structural diagram for the ground speed and crab angle meter -- 4.2.5 Design principles -- 4.2.6 Sources of Doppler radar errors -- 4.2.7 Examples -- 4.3 Airborne weather sensors -- 4.3.1 Weather radar as mandatory equipment of airliners and transport aircraft -- 4.3.2 Multifunctionality of airborne weather radar -- 4.3.3 Meteorological functions of AWR -- 4.3.4 Principles of DWP detection with AWR -- 4.3.4.1 Developing methods of DWP detection -- 4.3.4.2 Cumulonimbus clouds and heavy rain -- 4.3.4.3 Turbulence detection -- 4.3.4.4 Wind shear detection -- 4.3.4.5 Hail zone detection -- 4.3.4.6 Probable icing-in-flight zone detection -- 4.3.5 Surface mapping -- 4.3.5.1 Comparison of radar and visual orientation -- 4.3.5.2 The surface-mapping principle -- 4.3.5.3 Reflecting behavior of the earth's surface -- 4.3.5.4 The radar equation and signal correction -- 4.3.5.5 Automatic classification of navigational landmarks -- 4.3.6 AWR design principles -- 4.3.6.1 The operating principle and typical structure of AWR -- 4.3.6.2 AWR structures -- 4.3.6.3 Performance characteristics: basic requirements -- 4.3.7 AWR examples -- 4.3.8 Lightning sensor systems: stormscopes -- 4.3.9 Optical radar -- 4.3.9.1 Doppler lidar -- 4.3.9.2 Infrared locators and radiometers -- 4.3.10 The integrated localization of dangerous phenomena -- 4.4 Collision avoidance sensors -- 4.4.1 Traffic alert and collision avoidance systems (TCAS) -- 4.4.1.1 The purpose -- 4.4.1.2 A short history -- 4.4.1.3 TCAS levels of capability -- 4.4.1.4 TCAS concepts and principles of operation -- 4.4.1.5 Basic components -- 4.4.1.6 Operation -- 4.4.1.7 TCAS logistics -- 4.4.1.8 Cockpit presentation -- 4.4.1.9 Examples of system implementation -- 4.4.2 The ground proximity warning system (GPWS) -- 4.4.2.1 Purpose and necessity -- 4.4.2.2 GPWS history, principles, and evolution -- 4.4.2.3 GPWS modes -- 4.4.2.4 Shortcomings of classical GPWS -- 4.4.2.5 Enhanced GPWS -- 4.4.2.6 Look-ahead warnings -- 4.4.2.7 Implementation examples -- References.

5. Devices and sensors for linear acceleration measurement -- 5.1 Introduction -- 5.2 Types of accelerometers -- 5.2.1 Linear and pendulous accelerometers -- 5.2.2 Direct conversion accelerometers and compensating accelerometers -- 5.2.2.1 Direct conversion accelerometers -- 5.2.2.2 Compensating accelerometers -- 5.3 Accelerometer parameters -- 5.3.1 Acceleration measurement range azmax -- 5.3.2 Resolution azmin -- 5.3.3 Zero signal (bias) a0 -- 5.3.4 Scale factor Ka -- 5.3.5 Biasing error (misalignment) -- 5.3.6 Accelerometer frequency characteristics -- 5.3.7 Special accelerometer parameters -- 5.3.7.1 Magnetic leakage -- 5.3.7.2 Electromagnetic noise -- 5.3.7.3 Readiness time -- 5.3.7.4 Noise level in the accelerometer output -- 5.3.7.5 Sensitivity to external constant and variable magnetic fields -- 5.3.7.6 Sensitivity to changes in power supply voltage -- 5.3.7.7 Sensitivity to external pressure, humidity, and radiation -- 5.4 Float pendulous accelerometer (FPA) -- 5.4.1 Basic EMU design schemes -- 5.4.1.1 Advantages -- 5.4.1.2 Disadvantages -- 5.4.2 Hydrostatic accelerometer suspensions -- 5.4.3 FPA float balancing -- 5.4.4 Hydrodynamic forces and moments in the FPA -- 5.4.5 Movement of FPA float under vibration -- 5.5 Micromechanical accelerometers (MMAS) -- 5.5.1 The single-axis MMA -- 5.5.2 The three-axis MMA -- 5.5.3 The compensating type MMA -- 5.5.4 Solid-state MMA manufacturing techniques -- References.

6. Gyroscopic devices and sensors -- 6.1 Introduction -- 6.1.1 Preliminary remarks -- 6.1.2 Classification of gyros -- 6.1.3 Gyroscopic instruments -- 6.1.4 Positional gyros -- 6.1.5 The vertical (or horizontal) gyro -- 6.1.6 Orbit gyro -- 6.1.7 Single degree of freedom (SDF) gyros -- 6.1.8 Gyro stabilizers -- 6.1.9 Gyroscopic instruments in aeronavigation -- 6.1.10 Inertial navigation systems (INS) -- 6.1.10.1 Types of INS -- 6.1.10.2 Strapdown INS -- 6.1.11 The scope of gyros and gyro instruments of various types -- 6.2 Single degree of freedom (SDF) gyros -- 6.2.1 The solid rotor SDF gyro -- 6.2.2 The integrating gyro -- 6.2.3 Rate of speed gauging -- 6.2.3.1 Feedback contours of the angular rate gauge -- 6.2.3.2 Design variants -- 6.3 The TDF gyro in gimbal mountings -- 6.3.1 Properties of a free gyro -- 6.3.2 Areas of application, design features, and error sources -- 6.3.3 Two-component angular speed measuring instruments -- 6.4 The gyroscopic integrator for linear acceleration (GILA) -- 6.4.1 Principles of GILA operation -- 6.4.2 Sources of GILA errors -- 6.5 Contactless suspension gyros -- 6.5.1 Introduction -- 6.5.2 The electrostatic gyroscope (ESG) -- 6.5.2.1 ESG accuracy -- 6.5.2.2 The ESG rotor -- 6.5.2.3 The rotor electrostatic suspension -- 6.5.2.4 Angular rotor position readout -- 6.5.3 Conclusion -- 6.6 The fiber optic gyro (FOG) -- 6.6.1 The interferometric fiber optic gyro (IFOG) -- 6.6.1.1 The basic IFOG scheme and the Sagnac effect -- 6.6.1.2 Open-loop operation -- 6.6.1.3 Closed-loop operation -- 6.6.1.4 Fundamental limitations -- 6.6.1.5 The multiple-axis IFOG -- 6.6.1.6 The depolarized IFOG -- 6.6.1.7 Applications of the IFOG -- 6.6.2 The resonator fiber optic gyro (RFOG) -- 6.7 The ring laser gyro (RLG) -- 6.7.1 Introduction -- 6.7.2 Principle of operation -- 6.7.3 Frequency characteristics and mode-locking counter-rotating waves -- 6.7.4 The elimination of mode-locking in counter-rotating waves -- 6.7.5 Errors -- 6.7.6 Performance and application -- 6.7.7 Conclusion -- 6.8 Dynamically tuned gyros (DTG) -- 6.8.1 Introduction -- 6.8.2 Key diagrams and dynamic tuning -- 6.8.3 Operating modes -- 6.8.4 Disturbance moments depending on external factors and instrumental errors -- 6.8.5 Magnetic, aerodynamic, and thermal disturbance moments -- 6.8.6 Design, application, technical characteristics -- 6.8.7 Conclusion -- 6.9 Solid vibrating gyros -- 6.9.1 Introduction -- 6.9.2 Dynamic behavior of the ideal solid vibrating gyro -- 6.9.3 Operating modes of the solid vibrating gyro -- 6.9.4 The nonideal solid vibrating gyro -- 6.9.5 Control of the solid vibrating gyro -- 6.9.6 Axisymmetric-shell gyros -- 6.9.7 The HRG, history and current status -- 6.9.8 HRG design characteristics -- 6.9.9 Additional HRG references -- 6.10 Micromechanical gyros -- 6.10.1 Introduction -- 6.10.2 Operating principles -- 6.10.2.1 Linear-linear (LL-type) gyros -- 6.10.2.2 Rotary-rotary (RR-type) gyro principles -- 6.10.2.3 Fork and rod gyro principles -- 6.10.2.4 Ring gyro principles -- 6.10.3 Adjustment of oscillation modes in gyros of the LL and RR types -- 6.10.4 Design, application, and performance -- 6.10.4.1 Gyros of the LL and RR-type -- 6.10.4.2 Fork and rod gyros -- 6.10.4.3 Ring gyros -- 6.10.5 Conclusion -- References.

7. Compasses -- 7.1 Introduction -- 7.2 Magnetic compasses -- 7.2.1 Brief historical sketch -- 7.2.2 The earth's magnetic field -- 7.2.3 Magnetic compass design principles and errors -- 7.2.4 Examples of magnetic compasses structures -- 7.3 Fluxgate and gyro-magnetic compasses -- 7.3.1 Fluxgate and gyro-magnetic compasses design principles -- 7.3.2 Examples of fluxgate and gyro-magnetic structures -- 7.4 Electronic compasses -- References.

8. Propulsion sensors -- 8.1 Introduction -- 8.2 Fuel quantity sensors -- 8.2.1 Mechanical and electromechanical methods of level sensing -- 8.2.1.1 Buoyancy or float methods -- 8.2.1.2 Level sensing using pressure transducers -- 8.2.2 Electronic methods of level sensing -- 8.2.2.1 Conductivity level sensing -- 8.2.2.2 Capacitive level sensing -- 8.2.2.3 Heat-transfer level sensing -- 8.2.2.4 Ultrasonic methods -- 8.3 Fuel consumption sensors -- 8.3.1 Introduction -- 8.3.2 Flow-obstruction methods -- 8.3.2.1 Practical considerations for obstruction meters -- 8.3.3 The turbine flow meter -- 8.3.4 The vane-type flow meter -- 8.4 Pressure sensors -- 8.4.1 Basic concepts -- 8.4.2 Basic sensing methods -- 8.4.2.1 The diaphragm -- 8.4.2.2 Capsules -- 8.4.2.3 The bourdon tube -- 8.4.3 Signal acquisition -- 8.4.3.1 Capacitive deflection transducers -- 8.4.3.2 Inductive deflection transducers -- 8.4.3.3 Potentiometric deflection transducers -- 8.4.3.4 Null-balance servo pressure transducers -- 8.4.4 Operational requirements -- 8.5 Engine temperatures -- 8.5.1 Intermediate turbine temperature (ITT) -- 8.5.2 Oil temperature/fuel temperature -- 8.5.3 Fire sensors -- 8.5.4 Exhaust gas temperature (EGT) -- 8.5.5 Nacelle temperature -- 8.6 Tachometry -- 8.6.1 The eddy current tachometer -- 8.6.2 The AC generator tachometer -- 8.6.3 The variable reluctance tachometer -- 8.6.4 The Hall effect tachometer -- 8.7 Vibration sensors, engine and nacelle -- 8.8 Regulatory issues -- References -- Bibliography.

9. Principles and examples of sensor integration -- 9.1 Sensor systems -- 9.1.1 The sensor system concept -- 9.1.2 Joint processing of readings from identical sensors -- 9.1.3 Joint processing of readings from cognate sensors with different measurement ranges -- 9.1.4 Joint processing of diverse sensors readings -- 9.1.5 Linear and nonlinear sensor integration algorithms -- 9.2 Fundamentals of integrated measuring system synthesis -- 9.2.1 Synthesis problem statement -- 9.2.2 Classes of dynamic system realization -- 9.2.3 Measurement accuracy indices -- 9.2.4 Excitation properties -- 9.2.5 Objective functions for robust system optimisation -- 9.2.6 Methods of dynamic system accuracy index analysis under excitation with given numerical characteristics of derivatives -- 9.2.6.1 Estimation of error variance -- 9.2.6.2 Example of error variance analysis -- 9.2.6.3 Use of equivalent harmonic excitation -- 9.2.6.4 Estimation of error maximal value -- 9.2.7 System optimization under maximum accuracy criteria -- 9.2.8 Procedures for the dimensional reduction of a measuring system -- 9.2.8.1 Determination of an optimal set of sensors -- 9.2.8.2 Analysis of the advantages of invariant system construction -- 9.2.8.3 Advantages of the zeroing of several system parameters -- 9.2.9 Realization and simulation of integration algorithms -- 9.3 Examples of two-component integrated navigation systems -- 9.3.1 Noninvariant robust integrated speed meter -- 9.3.2 Integrated radio-inertial measurement -- 9.3.3 Airborne gravimeter integration -- 9.3.4 The orbital verticant -- References.

Epilogue -- Index.
Local Note:
eBooks on EBSCOhost
Format:
Electronic Resources
Electronic Access:
Click here to view
Publication Date:
2013
Publication Information:
[New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, ©2013.