Cover image for Pulse Foods : Processing, Quality and Nutraceutical Applications.
Pulse Foods : Processing, Quality and Nutraceutical Applications.
ISBN:
9780128181850
Title:
Pulse Foods : Processing, Quality and Nutraceutical Applications.
Author:
Tiwari, Brijesh K.
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (538 pages)
Contents:
Front Cover -- Pulse Foods -- Pulse Foods -- Copyright -- Contents -- Contributors -- 1 - Advances in pulse foods -- 1.1 Introduction -- 1.2 Historical perspective and relevance -- 1.3 Pulse processing and utilization -- 1.4 Relevance of this book -- Further reading -- 2 - The nutritional value of whole pulses and pulse fractions -- 2.1 Introduction -- 2.2 Pulses-intakes and trends -- 2.3 Nutritional value of whole pulses -- 2.4 Nutritional value of pulse fractions -- 2.4.1 Fiber -- 2.4.2 Protein -- 2.4.3 Isoflavones -- 2.4.4 Bioactive compounds -- 2.4.5 Antinutritional compounds -- 2.5 Health benefits of eating pulses -- 2.5.1 Diabetes prevention -- 2.5.2 Cardiovascular health -- 2.5.3 Lowering cholesterol -- 2.5.4 Cancer prevention -- 2.5.5 Obesity management -- 2.5.6 Osteoporosis -- 2.6 Conclusions -- References -- 3 - Chemistry of pulses-macronutrients -- 3.1 Introduction -- 3.2 Overview -- 3.3 Major constituents -- 3.3.1 Proteins -- 3.3.1.1 Structure and classification of proteins -- 3.3.1.2 Protein secondary structure -- 3.3.1.3 Protein composition -- 3.3.1.4 Functional application of seed storage proteins -- 3.3.2 Carbohydrates -- 3.3.2.1 Starch yield and chemical composition -- 3.3.3 Dietary fiber -- 3.3.4 Nonstarch polysaccharides and minor carbohydrates -- 3.4 Lipid storage bodies, lipid content, distribution, and composition in legume -- 3.4.1 Fatty acids -- 3.5 Conclusions -- References -- 4 - Chemistry of pulses-micronutrients -- 4.1 Introduction -- 4.2 Minor components -- 4.2.1 Vitamins -- 4.2.2 Folate -- 4.2.3 Minerals -- 4.2.4 Phytic acids -- 4.2.5 Polyphenols -- 4.2.5.1 Isoflavones -- 4.2.5.2 Saponins -- 4.2.6 Oxalate -- 4.2.7 Phytosterols -- 4.2.8 Alkaloids -- 4.3 Conclusions -- References -- 5 - Functional and physicochemical properties of pulse starch -- 5.1 Introduction -- 5.2 Starch isolation.

5.3 Physicochemical properties -- 5.3.1 Morphology -- 5.3.2 Composition -- 5.3.3 Structure -- 5.3.4 Granule size distribution -- 5.3.5 Swelling and solubility -- 5.4 Thermal properties -- 5.5 Dynamic rheological properties -- 5.5.1 Pasting properties -- 5.5.2 Retrogradation properties -- 5.6 Digestibility -- 5.7 Conclusions -- References -- 6 - Functional and physicochemical properties of pulse proteins -- 6.1 Introduction -- 6.2 Preparation of protein concentrates and isolates -- 6.3 Functional properties of pulse proteins -- 6.3.1 Solubility, water-, and oil-absorption capacity -- 6.3.2 Emulsifying and foaming properties -- 6.3.3 Protein gelation characteristics -- 6.4 Role of secondary interactions -- 6.4.1 Protein-polyphenol interaction -- 6.4.2 Role of protein-carbohydrate interaction -- 6.5 Food applications of pulse proteins -- 6.5.1 Baked products -- 6.5.2 Pasta products -- 6.5.3 Meat products -- 6.5.4 Other food applications -- References -- 7 - Legume fiber characterization, functionality, and process effects -- 7.1 Introduction -- 7.2 Legume dietary fibers -- 7.2.1 Variation in dietary fiber content -- 7.2.2 Insoluble fibers -- 7.2.3 Soluble fibers -- 7.3 Factors affecting levels of dietary fibers -- 7.3.1 Thermal processing -- 7.3.2 Milling and grinding -- 7.3.3 Soaking and fermentation -- 7.3.4 Boiling and roasting -- 7.3.5 Cooking -- 7.3.6 Drying and dehydration -- 7.3.7 Canning -- 7.3.8 Extrusion cooking -- 7.4 Physicochemical properties of legume fiber -- 7.4.1 Bulk density -- 7.4.2 Swelling capacity -- 7.4.3 Water-holding capacity/water-binding capacity -- 7.4.4 Oil-binding capacity -- 7.4.5 Cation-exchange capacity -- 7.5 Physiological activity of legume fibers -- 7.6 Conclusion -- References -- 8 - Pulses nonstarch polysaccharides -- 8.1 Introduction -- 8.2 NSP classifications -- 8.3 Pulses and its NSP content.

8.3.1 NSP and milling fractions -- 8.3.1.1 NSP: cellulose and hemicelluloses -- 8.3.1.2 NSP: pectin, gums, lignins, and mucilages -- 8.4 NSP: physiological and health -- 8.4.1 Physiological effects of NSP -- 8.4.2 NSP and health -- 8.5 Effect of processing on NSP -- 8.6 Conclusion -- References -- 9 - Pulses postharvest technology -- 9.1 Introduction -- 9.2 Postharvest losses -- 9.3 Drying of pulses -- 9.3.1 Aeration -- 9.3.2 Headspace condensation -- 9.3.3 Monitoring -- 9.4 Storage of pulses -- 9.4.1 Storage systems -- 9.4.2 Storage pests -- 9.4.3 Detection of storage pests -- 9.5 Effect of postharvest technology on quality -- 9.6 Conclusions -- References -- 10 - Pulse milling technologies -- 10.1 Introduction -- 10.2 Traditional methods of dehulling, splitting, and grinding -- 10.2.1 Decortication (dehulling without splitting) -- 10.2.2 Dehulling and splitting -- 10.3 Industrial methods of dehulling and splitting -- 10.3.1 Premilling preparation of seeds -- 10.3.2 Evolution to modern milling equipment -- 10.3.3 Laboratory-scale dehulling and splitting equipment -- 10.3.4 Milling calculations -- 10.4 Preconditioning treatments -- 10.4.1 Wet milling -- 10.4.2 Dry milling -- 10.4.3 Drying -- 10.5 Pulse characteristics affecting dehulling and splitting performance -- 10.5.1 Pulse species and morphological types -- 10.5.2 Variety (cultivar) -- 10.5.3 Ratio of seed coat to cotyledon -- 10.5.4 Geometrical properties -- 10.5.4.1 Seed size and uniformity of size -- 10.5.4.2 Seed shape -- 10.5.5 Mechanical properties -- 10.5.5.1 Seed hardness and strength -- 10.5.5.2 Brittleness -- 10.5.6 Physiochemical properties of the seed coat, cotyledons and interfaces -- 10.5.7 Seed moisture content -- 10.5.8 Topographical morphology of cotyledon and seed coat surfaces -- 10.6 Current and future trends-improving dehulling and splitting performance.

10.6.1 Optimizing milling parameters -- 10.6.2 Use of pretreatments -- 10.6.3 Advances in drying techniques -- 10.6.4 Environmental effects on dehulling and splitting -- 10.6.5 Advances in genetic understanding -- 10.7 Distribution of pulse dehulling and splitting -- 10.8 Milling of pulses to produce flours -- 10.9 Pre- and postmilling treatments of pulse flours -- 10.9.1 Premilling treatments -- 10.9.2 Postmilling treatments -- 10.10 Production of pulse fractions -- 10.10.1 Dry fractionation -- 10.10.2 Wet fractionation -- 10.11 Using pulse flours and fractions in foods -- 10.12 Summary -- References -- 11 - Emerging technologies for pulse processing -- 11.1 Introduction -- 11.2 Brief description of emerging technologies -- 11.2.1 Dielectric heating -- 11.2.2 Other electrotechnologies -- 11.2.3 High-pressure processing -- 11.3 Applications of emerging technologies to pulses and processing -- 11.3.1 Dielectric heating: radiofrequency heating -- 11.3.1.1 Dielectric properties of pulses -- 11.3.2 Microwave heating -- 11.3.3 Irradiation -- 11.3.4 High-pressure processing -- 11.3.5 Autoclaving -- 11.4 Conclusions -- References -- 12 - Cold plasma applications on pulse processing -- 12.1 Introduction -- 12.2 Plasma application in pulse storage -- 12.2.1 Insect control -- 12.2.2 Microbial control -- 12.2.3 Reduction in toxic chemical levels -- 12.2.3.1 Mycotoxins -- 12.2.3.2 Antinutritional factor -- 12.3 Effect of cold plasma on pulse germination -- 12.4 Effect of cold plasma on pulse processing, flour, and product quality -- 12.4.1 Industrial application of cold plasma and scale-up -- 12.5 Conclusion -- References -- 13 - Innovative extraction technologies for high-value compounds -- 13.1 Introduction -- 13.2 Extraction of high-value compounds from pulses -- 13.2.1 Protein extraction -- 13.2.1.1 Dry methods -- 13.2.1.2 Wet extraction methods.

13.2.2 Extraction of carbohydrates -- 13.2.3 Extraction of polyphenols -- 13.3 Innovative technologies and functional properties of pulse-derived ingredients -- 13.4 Other uses of innovative technologies to improve the biological properties of pulse-derived ingredients -- 13.4.1 Inactivation of antinutritional factors -- 13.4.2 Generation of bioactive compounds -- 13.5 Future and challenges of the application of innovative technologies -- 13.6 Conclusion -- References -- 14 - Pulses: quality standards and evaluation -- 14.1 Introduction -- 14.2 Criteria for quality assessment -- 14.3 Quality standard parameters -- 14.3.1 International pulse quality committee -- 14.3.2 Codex Alimentarius commission -- 14.3.2.1 CAC pulses standard -- 14.3.2.2 Moisture content -- 14.3.2.3 Extraneous matter -- 14.3.2.4 Toxic or noxious seeds -- 14.3.2.5 Contaminants -- 14.3.2.5.1 Heavy metals -- 14.3.2.5.2 Pesticide residues -- 14.3.2.5.3 Mycotoxins -- 14.3.2.6 Hygiene -- 14.3.2.7 Packaging -- 14.3.2.8 Labeling -- 14.3.2.9 Analysis methods and sampling criteria for pulses -- 14.3.3 The AACC pulse and grain legume technical committee -- 14.3.4 Standardized names and seed testing -- 14.4 Techniques for quality evaluation -- 14.5 Conclusions -- References -- 15 - Pulse-based food products -- 15.1 Introduction -- 15.2 Common forms of pulse foods -- 15.2.1 Dry pulses -- 15.2.2 Canned pulses -- 15.3 Sprouted pulses -- 15.4 Traditional fermented products -- 15.5 Developments in pulse products -- 15.5.1 Quick-cook dehydrated pulses -- 15.5.2 Extruded pulse products -- 15.5.3 Snack-based products -- 15.6 Value-added pulse-based products -- 15.6.1 Pulse roasting -- 15.6.2 Gluten-free products -- 15.6.3 Pulses and noodles -- 15.7 Developments in pulse-based fermented products -- 15.8 Conclusions -- References -- 16 - Extrusion technologies for cereal-pulses blends.

16.1 Introduction.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2020
Publication Information:
San Diego :

Elsevier Science & Technology,

2020.

©2021.