Cover image for Chemical Analysis of Food : Techniques and Applications.
Chemical Analysis of Food : Techniques and Applications.
ISBN:
9780128132678
Title:
Chemical Analysis of Food : Techniques and Applications.
Author:
Pico, Yolanda.
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (918 pages)
Contents:
Cover -- Title -- Copyright -- Contents -- Contributors -- Preface of the second edition -- Part I Chemical analysis of food -- 1 - Basics and advances in sampling and sample preparation -- 1 - Introduction -- 2 - Types of samples and the analytical procedure -- 3 - Trends in sample preparation for food analysis -- 3.1 - From volatile organic solvents to ionic liquids and (natural) deep eutectic solvents -- 3.2 - Use of deep eutectic and natural deep eutectic solvents in the food field -- 4 - Conclusions -- Acknowledgments -- References -- 2 - Chemometrics: multivariate analysis of chemical data -- 1 - Introduction -- 1.1 - From data to information -- 2 - From univariate to multivariate -- 2.1 - Histograms -- 2.2 - Normality tests -- 2.3 - ANOVA -- 2.4 - Radar charts -- 3 - Multivariate data analysis -- 3.1 - Principal component analysis -- 3.2 - Exploratory analysis of multidimensional data arrays -- 3.3 - Signal preprocessing -- 3.3.1 - Standard normal variate transform (SNV) -- 3.3.2 - Derivatives -- 3.3.3 - Horizontal alignment -- 3.4 - Supervised data analysis and validation -- 3.4.1 - Single evaluation set -- 3.4.2 - Cross-validation (CV) -- 3.4.3 - Repeated evaluation set -- 3.5 - Supervised qualitative modeling -- 3.5.1 - Classification and class-modeling -- 3.5.2 - Evaluation parameters -- 3.5.3 - Distance-based techniques -- 3.5.3.1 - k nearest neighbors (k-NN) -- 3.5.3.2 - A nonparametric class-modeling technique -- 3.5.3.3 - Soft independent modeling of class analogy (SIMCA) -- 3.5.4 - Probabilistic techniques -- 3.5.4.1 - Linear discriminant analysis -- 3.5.4.2 - Quadratic discriminant analysis -- 3.5.4.3 - Unequal class models -- 3.5.4.4 - Potential functions methods -- 3.6 - Supervised quantitative modeling -- 3.6.1 - Ordinary least squares -- 3.6.2 - Principal component regression -- 3.6.3 - Partial least squares.

3.7 - Artificial neural networks -- 4 - Current trends and applications -- Acknowledgments -- References -- 3 - Near-infrared, mid-infrared, and Raman spectroscopy -- 1 - Introduction -- 2 - Theory -- 3 - Instrumentation -- 3.1 - Near-infrared spectrometers -- 3.2 - Mid-infrared spectrometer -- 3.2.1 - Dispersive spectrometers -- 3.2.2 - Fourier transform spectrometers -- 3.3 - Raman spectrometers -- 4 - Sample presentation -- 4.1 - Near-infrared sample accessories -- 4.2 - Mid-infrared sample accessories -- 4.3 - Raman sample accessories -- 5 - New generation of spectrometers -- 5.1 - Online systems -- 5.2 - Mapping and imaging systems -- 5.3 - Hyphenated techniques -- 5.4 - Advantages and limitations of spectroscopic techniques -- 6 - Chemometric approach -- 7 - Applications in food analysis -- 7.1 - Geographic origin -- 7.1.1 - MIR spectroscopy for the geographic authentication of wines -- 7.1.2 - NIR spectroscopy for the geographic authentication of olive oil -- 7.1.3 - FT-Raman spectroscopy for the geographic authentication of honey -- 7.1.4 - Spectroscopic methods for the geographic authentication of cheese -- 7.2 - Species discrimination -- 7.2.1 - FT-MIR spectroscopy for the discrimination of meat products -- 7.2.2 - NIR spectroscopy for the discrimination of botanical honey origin -- 7.2.3 - Raman spectroscopy for the discrimination of green coffee varieties -- 7.2.4 - Spectroscopic methods for the discrimination of phenolic compounds -- 7.3 - Detection of adulteration -- 7.3.1 - FT-MIR spectroscopy for the detection of adulteration of herbs and spices -- 7.3.2 - FT-NIR spectroscopy for the detection of adulteration of milk powder -- 7.3.3 - FT-Raman spectroscopy for the detection of adulteration of honey -- 7.3.4 - Spectroscopic methods for the detection of adulteration of vegetable oils -- 7.4 - Detection of contamination.

7.4.1 - MIR spectroscopy for the detection of wheat contamination -- 7.4.2 - NIR spectroscopy for the detection of rice contamination -- 7.4.3 - FT-Raman spectroscopy for the detection of food contamination -- 7.4.4 - Spectroscopic methods for the detection and identification of biofilms -- 7.5 - Process control -- 7.5.1 - FT-NIR spectroscopy to control meat composition -- 7.5.2 - Raman spectroscopy to control chocolate bloom -- 7.5.3 - Spectroscopic methods to control oil properties -- 7.5.4 - Spectroscopic methods to monitor wine fermentation -- 7.6 - Physicochemical properties -- 7.6.1 - FT-MIR spectroscopy for the determination of peroxide value of vegetable oils -- 7.6.2 - NIR spectroscopy to estimate the antioxidant capacity -- 7.6.3 - FT-Raman for the determination of honey composition -- 7.6.4 - Spectroscopic methods for the determination of alcohol content in alcohol beverages -- 7.7 - Food quality -- 7.7.1 - FT-MIR spectroscopy for the determination of quality parameters of beers -- 7.7.2 - NIR spectroscopy for the analysis of white pudding -- 7.7.3 - Raman spectroscopy for analysis of fish -- 7.7.4 - Spectroscopic methods for analysis of milk fat -- 7.7.5 - IS-NIR spectroscopy for quality evaluation of fruits, the case of apples -- 7.7.6 - Development of handheld spectrometers for fruit analysis -- 8 - Conclusion -- References -- 4 - Nuclear magnetic resonance -- 1 - Introduction -- 2 - Specialties of NMR spectroscopy -- 2.1 - One-dimensional high-resolution liquid state NMR (1D HR-NMR) -- 2.2 - Site-specific natural isotope fractionation by NMR (SNIF-NMR) -- 2.3 - Two-dimensional NMR spectroscopy (2D NMR) -- 2.4 - Solid state NMR spectroscopy -- 2.5 - Magnetic resonance imaging (MRI) -- 2.6 - Low-field NMR: relaxometry, diffusometry and spectroscopy -- 3 - Recent advances in NMR spectroscopy -- 3.1 - High-resolution liquid state NMR.

3.2 - High-resolution solid-state NMR spectroscopy -- 3.3 - Low-field NMR: relaxometry, diffusometry and spectroscopy -- 4 - Selected applications -- 4.1 - High-resolution liquid state NMR -- 4.2 - Solid-state NMR -- 4.2.1 - CPMAS -- 4.2.2 - HRMAS -- 4.3 - Magnetic resonance imaging -- 4.4 - Low-field NMR: diffusometry, relaxometry, spectroscopy -- 5 - Concluding remarks -- References -- 5 - Recent trends in molecular techniques for food pathogen detection -- 1 - Introduction -- 2 - Nucleic acids: the backbone of all molecular techniques -- 2.1 - RNA -- 2.2 - DNA -- 3 - Recent molecular techniques for detection of food borne pathogen -- 3.1 - Polymerase chain reaction -- 3.2 - Nested PCR -- 3.3 - Multiplex PCR -- 3.4 - Reverse transcription (rt) PCR -- 3.5 - Real-time (RT) PCR -- 3.6 - Digital PCR (dPCR) -- 4 - Advanced molecular techniques for detection of foodborne pathogens -- 4.1 - Loop-mediated isothermal amplification -- 4.1.1 - Primers for LAMP -- 4.1.2 - Steps of LAMP process -- 4.1.3 - Visualization of LAMP amplification products -- 4.2 - Nucleic acid sequence-based amplification -- 4.3 - OVATION amplification -- 4.4 - Multilocus sequence typing -- 4.5 - Ligase chain reaction -- 4.6 - Microarrays -- 5 - Genotyping methods for detection of foodborne pathogens -- 5.1 - Pulse field gel electrophoresis -- 5.2 - Rapid amplified polymorphic DNA -- 5.3 - Restriction fragment length polymorphism -- 5.4 - Amplified fragment length polymorphism -- 5.5 - Ribotyping -- 5.6 - Denaturing gradient gel electrophoresis -- 6 - DNA sequencing methods for detection of foodborne pathogens -- 6.1 - DNA sequencing: technology -- 6.1.1 - First-generation sequencing methods -- 6.1.1.1 - Maxam-Gilbert sequencing -- 6.1.1.2 - Sanger sequencing -- 6.1.2 - Next-generation sequencing -- 6.1.2.1 - Roche 454 -- 6.1.2.2 - Illumina SBS -- 6.1.2.3 - SOLiD sequencing.

6.1.2.4 - Ion PGM sequencing -- 6.1.2.5 - Pacific biosciences SMRT sequencing -- 6.1.2.6 - Oxford nanopore sequencing -- 6.2 - DNA sequencing: application in foodborne-pathogen identification approaches -- 6.2.1 - Whole genome sequencing -- 6.2.2 Whole metagenomic sequencing (WMS) -- 6.3 - Challenges with NGS methods -- 7 - Molecular techniques for GMOs and transgenic food -- 7.1 - Existing regulatory laws for GM foods available in market -- 7.2 - Reference materials, laboratory testing, and method validation for detection of GMOs -- 7.3 - Categories of molecular detection techniques for GMOs or transgenic food -- 7.3.1 - Category I: "Screening Target" specific -- 7.3.2 - Category II: "Gene" specific -- 7.3.3 - Category III: "Construct" specific -- 7.3.4 - Category IV: "Event" specific -- 7.4 - Southern blotting -- 7.5 - PCR -- 7.5.1 - Competitive PCR -- 7.5.2 - Quantitative or real-time PCR -- 7.5.3 - Multiplex PCR -- 7.5.4 - New PCR-based methods for GMO -- 7.6 - Array-based methods -- 7.7 - Toxicological analysis -- 7.8 - Next-generation sequencing -- 8 - Future prospects -- Acknowledgments -- Declaration of Competing Interest -- References -- 6 - Microfluidic devices: biosensors -- 1 - Introduction -- 2 - Biosensors classes and fundamentals -- 2.1 - Biological recognition elements -- 2.1.1 - Enzymes -- 2.1.2 - Immunosensors -- 2.1.3 - Nucleic acids -- 2.1.4 - Bacteriophages -- 2.1.5 - Whole cell biosensors -- 2.2 - Transduction elements -- 2.2.1 - Electrochemical transduction -- 2.2.2 - Optical transduction -- 2.2.3 - Chemiluminescence and bioluminescence -- 2.2.4 - Mass sensitive sensors -- 3 - Nanobiosensors, microfluidics, and lab-on-a-chip -- 3.1 - Label-based methods -- 3.2 - Label-free detection methods -- 3.3 - Micro/nanofluidics integrated with nanobiosensors -- 4 - Application of new biosensing technologies for food safety.

4.1 - Pesticide residues.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2020
Publication Information:
San Diego :

Elsevier Science & Technology,

2020.

©2020.