Cover image for Bottled and Packaged Water : Volume 4: the Science of Beverages.
Bottled and Packaged Water : Volume 4: the Science of Beverages.
ISBN:
9780128157046
Title:
Bottled and Packaged Water : Volume 4: the Science of Beverages.
Author:
Grumezescu, Alexandru.
Personal Author:
Physical Description:
1 online resource (490 pages)
Contents:
Front Cover -- Bottled and Packaged Water: Volume 4: The Science of Beverages -- Copyright -- Contents -- Contributors -- Series Preface -- Preface -- 1 Mineral and Bottled Water as Natural Beverages -- 1.1 Introduction -- 1.2 Physicochemical Properties of Mineral and Therapeutic Water and Its Roles in Daily Life -- 1.2.1 Selected Methods Used in the Measurement of the Chemical Composition of Mineral and Therapeutic Waters and the Radio ... -- 1.2.2 Occurrence of Heavy and Radioactive Elements in Mineral and Therapeutic Waters -- 1.2.2.1 Heavy Elements -- Calcium -- Magnesium -- Sodium -- Potassium -- Iron -- Barium -- Manganese -- Silver -- Copper -- Nickel -- Cobalt -- Lead and Cadmium -- Mercury -- Aluminum -- Arsenic -- Chromium -- Molybdenum -- Vanadium -- 1.2.2.2 Radioactive Elements (Radionuclides) -- Potassium 40K -- Uranium -- Radium Isotopes -- Lead 210Pb -- Polonium 210Po -- Radon (222Rn) -- 1.3 Treatment of Natural Water -- 1.4 Conclusion -- Acknowledgment -- References -- Further Reading -- 2 The World Around Bottled Water -- 2.1 Introduction -- 2.2 Types of Bottled Water -- 2.3 Bottled Water Versus Tap Water -- 2.4 Bottled Water Industry -- 2.5 Manufacture of Bottled Water -- 2.6 Labeling on Bottled Water -- 2.7 Energy Requirement for the Production of Bottled Water -- 2.8 Consumption of Bottled Water -- 2.9 How to Reduce Bottled Water Consumption -- 2.10 Water Quality Indices -- 2.11 Environmental Risk -- 2.12 Suggestions for the Future -- 2.13 Cons and Pros -- 2.14 To Know -- 2.15 Conclusion -- Acknowledgment -- Conflict of Interest -- References -- Further Reading -- 3 Study of Water Quality of Packaged and Municipal Supply Drinking Water With Performance Evaluation of Stand-Alone Filters -- 3.1 Introduction -- 3.2 Study Area -- 3.3 Objectives -- 3.4 Materials and Methods -- 3.5 Methodology of the Work.

3.5.1 Collection of Sample -- 3.5.2 Testing of Sample -- 3.6 Results and Discussion -- 3.6.1 Bottled Package Drinking Water ( Ray, 2015 -- Ray et al., 2016) -- 3.6.2 Bubble Top Can Package Drinking Water -- 3.6.3 Reverse Osmosis (RO) Water Filter -- 3.6.4 Domestic Built-In Stand-Alone Filters -- 3.6.5 KMC Supply Water Filtered by Candle Filters -- 3.6.6 Prepared Water Sample (as Controlled) Filtered by Candle Filters -- 3.7 Conclusion -- References -- Further Reading -- 4 Water Purification Technologies -- 4.1 Need for Water Purification -- 4.2 Strategies in Water Management -- 4.2.1 Production -- 4.2.2 Reuse -- 4.2.3 Protections -- 4.3 Technologies for Disinfection -- 4.3.1 UV Disinfection -- 4.3.2 Ozonation -- 4.3.2.1 Ozonation Process -- 4.3.2.2 Disadvantages of the Use of Ozone -- 4.4 Membrane Technologies -- 4.4.1 Microfiltration -- 4.4.2 Ultrafiltration -- 4.4.3 Nanofiltration -- 4.4.3.1 Separation Mechanisms in NF -- 4.4.4 Reverse Osmosis -- 4.4.4.1 Difficulties Associated With Process of RO -- Scaling -- Boron Removal Process -- Brine Disposal -- 4.4.5 Future Development of Membrane Technology -- 4.4.5.1 Electrodialysis -- 4.5 Advanced Oxidation Process -- 4.5.1 Ozone With H2O2 Addition -- 4.5.2 UV Irradiation With H2O2 Addition -- 4.6 Ion-Exchange Technology -- 4.7 Biological Filtration -- 4.8 Biosorption -- 4.8.1 Biosorption Mechanism -- 4.8.2 Transport Across Cell Membrane -- 4.8.3 Physical Adsorption -- 4.8.4 Ion Exchange -- 4.8.5 Complexation -- 4.8.6 Precipitation -- 4.8.7 Factors Influencing Biosorption -- 4.8.8 Comparison Between Low-Cost Adsorbents and Active Carbon -- 4.8.8.1 Chitosan -- 4.8.8.2 Zeolites -- 4.8.8.3 Clay -- 4.8.8.4 Activated Carbon -- 4.9 Conclusion -- References -- Further Reading.

5 Multielement and Isotopic Characterization of Bottled Mineral Waters on the Romanian Market -- 5.1 Introduction -- 5.2 Macro-, Micro-, and Toxic Elements in Waters -- 5.3 Isotopic Characterization of Drinking Waters -- 5.4 Data Processing Using Chemometric Methods -- 5.5 Elemental and Isotopic Content, Combined With Chemometric Approach, for Romanian Mineral Water Characterization -- 5.5.1 Element Determination -- 5.5.2 Isotopic Determination -- 5.5.3 Statistical Analysis -- Acknowledgment -- References -- Further Reading -- 6 Evaluation of Water Quality Available for Direct Use and in Beverages in Agra (India) -- 6.1 Introduction -- 6.2 Study Area -- 6.2.1 District Profile -- 6.2.1.1 Origin and Development -- 6.2.1.2 Location, Boundaries, and Weather -- 6.2.1.3 Area and Population -- 6.2.1.4 Infrastructure -- 6.2.2 Economy -- 6.3 Origin of the Research Problem -- 6.4 Review of Research and Development in the Subject -- 6.4.1 River Yamuna -- 6.5 Interdisciplinary Relevance -- 6.6 Significance of the Study -- 6.7 Materials and Methods -- 6.7.1 Groundwater Sample Collection for Physicochemical Properties -- 6.8 Results and Discussions -- 6.8.1 pH -- 6.8.2 Dissolved Oxygen -- 6.8.3 Total Dissolved Solids -- 6.8.4 Electric Conductivity -- 6.8.5 Turbidity -- 6.8.6 Fluoride -- 6.8.7 Hardness -- 6.8.8 Alkalinity -- 6.8.9 Na -- 6.8.10 Potassium -- 6.8.11 Calcium -- 6.8.12 Phosphate -- 6.8.13 Chloride -- 6.8.14 Magnesium -- 6.8.15 Bicarbonate -- 6.8.16 Sulfate -- 6.8.16.1 Odor Problems -- 6.8.16.2 Corrosion of Sewers -- 6.9 Conclusion -- Acknowledgment -- References -- Further Reading -- 7 Chemical Sensors for Water Potability Assessment -- 7.1 Introduction -- 7.2 Classification of Chemical Sensors for Water Analysis -- 7.2.1 Electrochemical Sensors -- 7.2.2 Optical Sensors.

7.2.3 Gravimetric and Other Types of Sensors -- 7.2.4 Multisensors Approach -- 7.3 Case Study 1: Potentiometric E-tongue for MC-LR Screening in Drinking Water -- 7.3.1 Case Statement -- 7.3.2 Experimental -- 7.3.3 Results -- 7.3.4 Outline -- 7.4 Case Study 2: Detection of Diverse Threats in Potable Water With Optical Sensor Arrays -- 7.4.1 Case Statement -- 7.4.2 Experimental -- 7.4.3 Results -- 7.4.4 Outline -- 7.5 Case Study 3: Multitransduction Sensory System for the Assessment of Transition Metals in Drinking Water -- 7.5.1 Case Statement -- 7.5.2 Experimental -- 7.5.3 Results -- 7.5.4 Outline -- 7.6 Conclusions -- References -- 8 Microbiological and Chemical Characterization of Bottled Waters -- 8.1 Introduction -- 8.2 Classification and Biology of Bottled Water -- 8.3 Microbiological and Physicochemical Parameters Tested for the Assessment of Bottled Water Quality -- 8.3.1 Microbiological Parameters Monitored for Water in Bottles or Other Containers -- 8.3.2 Number of Heterotrophic Bacteria Grown at 22°C and 37°C -- 8.3.3 Physicochemical Parameters Assessed for Water Bottled in Bottles or Other Containers -- 8.3.3.1 Taste and Smell -- 8.3.3.2 pH -- 8.3.3.3 Hardness -- 8.4 Analytical Methods Used for Water Testing -- 8.4.1 Microbiological Assays -- 8.4.1.1 Membrane Filtration Method -- 8.4.1.2 Pour Plate Method -- 8.4.2 Analytical Methods for Assessing the Chemical Parameters of Bottled Waters -- 8.4.2.1 Electrometric Method -- 8.5 Conclusions -- References -- 9 Advanced Biodegradable Materials for Water and Beverages Packaging -- 9.1 Introduction -- 9.2 Biodegradable Polymers -- 9.2.1 Polymers Extracted From Natural (Plant) Materials -- 9.2.2 Polymers Produced by Chemical Synthesis From Renewable Bio-Derived Monomers -- 9.2.3 Polymers Produced by Microorganisms.

9.3 Plastic Polymers Degrading Microorganisms -- 9.4 Biodegradation of Synthetic Polymers From Water and Beverages Packaging -- 9.5 Nanoparticles as Promotors for Biodegradation -- 9.6 Conclusions -- Acknowledgments -- References -- Further Reading -- 10 Contribution of Mineral and Tap Water to the Dietary Intake of As, B, Ca, Ce, Cu, F, La, Li, Mo, Ni, P, Pb, Sr, U, and ... -- 10.1 Introduction -- 10.2 Methodology for Assessing the Contribution of Mineral Waters to the Diet-Related Mineral in Take of Humans -- 10.2.1 Mineral Concentrations in Solid Food -- 10.2.2 Mineral Concentrations in Bottled Mineral and Tap Water -- 10.3 Significance of As, B, Ca, Ce, Cu, F, La, Li, Mo, Ni, P, Pb, Sr, U, and Zn for Human Health and Contribution of t ... -- 10.3.1 Arsenic (As) -- 10.3.2 Boron (B) -- 10.3.3 Calcium (Ca) -- 10.3.4 Cerium (Ce) and Lanthanum (La) -- 10.3.5 Copper (Cu) -- 10.3.6 Fluorine (F) -- 10.3.7 Lithium (Li) -- 10.3.8 Molybdenum (Mo) -- 10.3.9 Nickel (Ni) -- 10.3.10 Phosphorus (P) -- 10.3.11 Lead (Pb) -- 10.3.12 Strontium (Sr) -- 10.3.13 Uranium (U) -- 10.3.14 Zinc (Zn) -- 10.4 Conclusions -- References -- Further Reading -- 11 Significance of Geographical, Hydrogeological, and Hydrogeochemical Origin for the Elemental Composition of Bottled Ger ... -- 11.1 Introduction -- 11.2 Elemental Concentrations in Bottled German Mineral Waters -- 11.3 Standardization of Elemental Concentrations in Bottled Mineral Waters -- 11.4 Significance of the Geological Origin of Bottled Mineral Waters -- 11.5 Significance of the Hydrogeological Origin of Bottled Mineral Waters -- 11.6 Significance of the Hydrogeochemical Classification of Bottled Mineral Waters -- 11.7 Significance of Principal Component Analysis of Bottled Mineral Waters -- 11.8 Conclusions -- Acknowledgment -- References.

12 Characterization of Bioactive Compounds in Flavored Waters and Fruit Juices.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2019
Publication Information:
San Diego :

Elsevier Science & Technology,

2019.

©2019.