Cover image for Food Waste to Valuable Resources : Applications and Management.
Food Waste to Valuable Resources : Applications and Management.
ISBN:
9780128183540
Title:
Food Waste to Valuable Resources : Applications and Management.
Author:
Banu, Rajesh.
Personal Author:
Physical Description:
1 online resource (464 pages)
Contents:
Front Cover -- Food Waste to Valuable Resources -- Copyright Page -- Contents -- List of contributors -- Author biographies -- 1 Introduction: sources and characterization of food waste and food industry wastes -- 1.1 Food waste and food loss -- 1.2 Food supply chain waste characterization -- 1.3 Sources and origins of food waste -- 1.4 Food waste generation -- 1.5 Food waste quantification -- 1.6 Types of food waste and food processing wastes -- 1.7 Food waste hierarchy -- 1.8 Management and valorization of food waste -- 1.8.1 Animal feed -- 1.8.2 Landfill -- 1.8.3 Bioenergy and biofuel conversion approaches -- 1.8.4 Composting -- 1.8.5 Value-added products recovery -- 1.9 Conclusion -- References -- 2 Valorization of food waste for biogas, biohydrogen, and biohythane generation -- 2.1 Introduction -- 2.2 Anaerobic digestion of food waste -- 2.2.1 Pretreatments employed -- 2.3 Factors affecting anaerobic digestion of food waste -- 2.3.1 pH -- 2.3.2 Temperature -- 2.3.3 Hydraulic retention time -- 2.3.4 Organic loading rate -- 2.3.5 Micronutrients -- 2.3.6 Foaming -- 2.4 Process configuration -- 2.4.1 Single-stage digestion -- 2.4.2 Two-stage digestion -- 2.4.3 Multistage digestion -- 2.4.4 Codigestion -- 2.5 Reactor configuration -- 2.6 Hydrogen production: dark fermentation -- 2.6.1 Biohydrogen production from food waste -- 2.6.2 Biohydrogen production from food industry waste -- 2.7 Factors affecting biohydrogen production -- 2.7.1 Components/composition of food waste -- 2.7.2 Pretreatments -- 2.7.3 Volatile fatty acids -- 2.8 Biohythane production from food waste -- 2.8.1 Process description -- 2.9 Enhancement strategies of biohythane production -- 2.10 Applications of biohythane -- 2.11 Challenges in the commercialization of biofuel from food waste -- 2.12 Future perspectives -- 2.13 Conclusion -- References.

3 Valorization of food waste for bioethanol and biobutanol production -- 3.1 Introduction -- 3.2 Bioalcohol production from food waste -- 3.2.1 Bioethanol -- 3.2.2 Biobutanol -- 3.2.3 Comparison of bioalcohol properties and their applications -- 3.3 Bioalcohol production processes -- 3.3.1 Upstream process -- 3.3.1.1 Pretreatment -- 3.3.1.1.1 Physical pretreatment -- 3.3.1.1.2 Chemical pretreatment -- 3.3.1.1.3 Mechanical pretreatment -- 3.3.1.1.4 Biological pretreatment -- 3.3.1.1.5 Combined pretreatment -- 3.3.1.2 Hydrolysis or saccharification -- 3.3.1.3 Detoxification -- 3.3.2 Midstream process -- 3.3.2.1 Biobutanol fermentation -- 3.3.2.2 Bioethanol fermentation -- 3.3.3 Downstream process -- 3.3.3.1 Distillation -- 3.3.3.2 Gas stripping -- 3.3.3.3 Adsorption -- 3.3.3.4 Pervaporation -- 3.3.3.5 Integrated downstream process -- 3.4 Various bioalcohol fermentation methods -- 3.4.1 Separate hydrolysis and fermentation -- 3.4.2 Simultaneous saccharification and fermentation -- 3.4.3 Simultaneous saccharification and cofermentation -- 3.4.4 Consolidated bioprocessing -- 3.5 Other strategies to increase the bioalcohol yield -- 3.6 Conclusion -- References -- 4 Valorization of food waste for biodiesel production -- 4.1 Introduction -- 4.2 Various food waste pretreatments for biodiesel production -- 4.2.1 Physical pretreatment -- 4.2.2 Chemical pretreatment -- 4.2.3 Mechanical pretreatment -- 4.2.4 Biological pretreatment -- 4.2.5 Combined pretreatment -- 4.3 Lipids to biodiesel conversion -- 4.4 Transesterification process -- 4.4.1 Acid-catalyzed transesterification -- 4.4.2 Alkaline-catalyzed transesterification -- 4.4.3 Enzyme-catalyzed transesterification -- 4.4.3.1 Immobilized enzyme-catalyzed transesterification -- 4.4.3.2 Various enzyme immobilization techniques and their applications -- 4.4.3.2.1 Adsorption -- 4.4.3.2.2 Cross-linkage.

4.4.3.2.3 Entrapment -- 4.4.3.2.4 Encapsulation -- 4.4.3.2.5 Covalent binding -- 4.5 Reactors involved in biodiesel production -- 4.6 Scalability of biodiesel production -- 4.7 Future prospects and conclusion -- References -- Further reading -- 5 Thermochemical conversion of food waste for bioenergy generation -- 5.1 Introduction -- 5.2 Thermochemical routes for bioenergy generation -- 5.2.1 Incineration -- 5.2.1.1 Technologies -- 5.2.1.1.1 Moving grate -- 5.2.1.1.2 Rotary kilns -- 5.2.1.1.3 Fluidized bed -- 5.2.2 Combustion -- 5.2.2.1 Principles -- 5.2.2.2 Technologies -- 5.2.2.2.1 Fixed bed combustion -- 5.2.2.2.2 Fluidized bed combustion -- 5.2.2.2.3 Suspension burner -- 5.2.3 Cofiring -- 5.2.3.1 Technologies -- 5.2.3.1.1 Direct cofiring -- 5.2.3.1.2 Indirect cofiring -- 5.2.3.1.3 Parallel cofiring -- 5.2.4 Cocombustion -- 5.2.4.1 Principles -- 5.2.4.2 Technologies -- 5.2.4.2.1 Atmospheric fluidized bed combustor -- 5.2.4.2.2 Pressurized fluidized bed combustor -- 5.2.5 Pyrolysis -- 5.2.5.1 Technologies -- 5.2.5.1.1 Slow/conventional pyrolysis -- Fixed bed -- Rotary kiln -- 5.2.5.1.2 Fast pyrolysis/thermolysis -- Fluidized bed -- Rotating cone reactor -- Ablative pyrolysis reactor -- Pyrolysis reactor vacuum -- 5.2.5.1.3 Ultrafast/flash pyrolysis -- 5.2.6 Gasification -- 5.2.6.1 Principles -- 5.2.6.2 Technologies -- 5.2.6.2.1 Fixed/moving bed gasifier -- 5.2.6.2.2 Fluidized bed gasifier -- 5.2.6.2.3 Entrained bed gasifier -- 5.2.7 Hydrothermal carbonization -- 5.2.7.1 Transformation process -- 5.2.7.2 Influence of reaction parameters -- 5.3 Scalability of thermochemical conversion of food waste -- 5.3.1 Incineration -- 5.3.2 Combustion/cofiring -- 5.3.3 Gasification -- 5.3.4 Pyrolysis -- 5.3.5 Hydrothermal carbonization -- 5.4 Concluding remarks, challenges, and future prospects -- References -- Further reading.

6 Production of organic acids and enzymes/biocatalysts from food waste -- 6.1 Introduction -- 6.2 Production of organic acid from food waste -- 6.2.1 Citric acid -- 6.2.2 2,3-Butanediol -- 6.2.3 Succinic acid -- 6.2.4 3-Hydroxypropionic acid -- 6.2.5 1,3-Propanediol -- 6.2.6 Lactic acid -- 6.2.7 Volatile fatty acids -- 6.3 Production of enzymes -- 6.4 Extraction and purification -- 6.4.1 Dialysis -- 6.4.2 Microwave-assisted extraction -- 6.4.3 Ultrasonication-assisted extraction -- 6.4.4 Supercritical fluid extraction -- 6.4.5 Enzyme purification by chromatography -- 6.5 Downstream processing -- 6.6 Recovery -- 6.7 Conclusion -- References -- 7 Production of biopolymers and feed protein from food wastes -- 7.1 Introduction -- 7.2 Food waste as a valuable resource -- 7.2.1 Biopolymers -- 7.2.1.1 Fermentation process -- 7.2.1.2 Extraction and purification -- 7.2.1.3 Application -- 7.2.2 Single-cell oil -- 7.2.2.1 Application -- 7.2.3 Baker's yeast -- 7.2.4 Single-cell protein -- 7.2.4.1 Applications of single-cell protein -- 7.2.5 Polysaccharides -- 7.3 Reactors used for the production of biopolymers and feed proteins -- 7.4 Economic aspects and commercialization of biopolymer and protein feed production -- 7.5 Conclusion -- References -- Further reading -- 8 Production of fine chemicals from food wastes -- 8.1 Introduction -- 8.2 Food waste as a valuable source of bioactive chemicals -- 8.2.1 Aromatic compounds -- 8.2.1.1 Ester -- 8.2.1.2 Terpenes -- 8.2.1.3 Ketones -- 8.2.1.4 Lactones -- 8.2.1.5 Aldehydes -- 8.2.1.6 Thiols -- 8.2.2 Pigments -- 8.2.2.1 Prodigiosin -- 8.2.2.2 Monascus -- 8.2.2.3 Chlorophyll -- 8.2.2.4 Astaxanthin -- 8.2.3 Antibiotics -- 8.2.3.1 Penicillin -- 8.2.3.2 Cephalosporins -- 8.2.3.3 Tetracycline -- 8.2.3.4 Macrolides -- 8.2.4 Essential oils -- 8.2.4.1 Seed oil -- 8.2.4.2 Fish oil -- 8.2.4.3 Peel oil -- 8.2.4.4 Biolubricants.

8.3 Bioreactors used for fine chemical production -- 8.4 Various methods of extraction and purification of chemicals -- 8.4.1 Microwave-assisted extraction -- 8.4.2 Ionic liquid extraction techniques -- 8.4.3 Ultrasound-assisted extraction -- 8.4.4 High-voltage electric discharge -- 8.4.5 Pulsed electric field extraction -- 8.4.6 Supercritical fluid extraction -- 8.5 Economic consideration -- 8.6 Scale up and commercialization -- 8.7 Applications, limitations, and challenges during chemical recovery -- 8.8 Future perspectives and conclusions -- References -- Further reading -- 9 Specialty chemicals and nutraceuticals production from food industry wastes -- 9.1 Introduction -- 9.2 Bioactive compounds -- 9.2.1 Phenolic compounds from food waste -- 9.2.1.1 Flavonoids -- 9.2.1.2 Phenolic acids -- 9.2.1.3 Tannins -- 9.2.1.4 Stilbenes and lignans -- 9.2.2 Carotenoids -- 9.2.3 Bioactive peptides -- 9.2.4 Dietary fiber -- 9.3 Biosurfactants -- 9.4 Fermentation methods -- 9.5 Various extraction techniques for nutraceuticals recovery -- 9.5.1 Solvent extraction technique -- 9.5.2 Microwave-assisted extraction -- 9.5.3 Enzyme-assisted extraction -- 9.5.4 Supercritical fluid extraction -- 9.5.5 Subcritical water extraction -- 9.5.6 Ultrasound-assisted extraction -- 9.5.7 Pulsed electric field -- 9.5.8 High hydrostatic pressure extraction -- 9.6 Potential applications of food waste-derived nutraceuticals in the food, pharmaceuticals, and cosmeceuticals industries -- 9.6.1 Use as food additives -- 9.6.2 Use as nutraceuticals -- 9.6.3 Use as cosmeceuticals -- 9.7 Challenges and future prospects -- 9.8 Conclusion -- References -- 10 Enzymes/biocatalysts and bioreactors for valorization of food wastes -- 10.1 Introduction -- 10.2 Enzymatic valorization of food waste for fermentative polyhydroxybutyrate production -- 10.2.1 Mechanism of polyhydroxybutyrate synthesis.

10.2.2 Production of polyhydroxybutyrate.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2020
Publication Information:
San Diego :

Elsevier Science & Technology,

2020.

©2020.