Cover image for Food Processing : Advances in Non-Thermal Technologies.
Food Processing : Advances in Non-Thermal Technologies.
ISBN:
9781000377682
Title:
Food Processing : Advances in Non-Thermal Technologies.
Author:
Dash, Kshirod Kumar.
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (274 pages)
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Figures -- List of Tables -- About the Editors -- Contributors -- Chapter 1: High-Pressure-Based Food-Processing Technologies for Food Safety and Quality -- 1.1 Introduction -- 1.2 Technology Principles -- 1.2.1 Isostatic Principle -- 1.2.2 Le Chatelier-Braun Principle -- 1.2.3 Transition State Theory -- 1.2.4 Microscopic Arrangement/Ordering -- 1.3 Application of High-Pressure-Based Technologies for Food Preservation, Safety, and Quality -- 1.3.1 High-Pressure Pasteurization -- 1.3.2 Pressure-Assisted Thermal Processing -- 1.3.3 High-Pressure Freezing and Thawing -- 1.3.4 High-Pressure Crystallization of Lipids -- 1.3.5 High-Pressure Extraction -- 1.3.6 Role of High Pressure in Mass Transfer and Infusion -- 1.4 Conclusions -- Acknowledgment -- Nomenclature -- References -- Chapter 2: Application of Pulse Electric Fields in Food Processing -- 2.1 Introduction -- 2.2 Principles of Pulse Electric Field Processing -- 2.3 PEF System Components -- 2.3.1 Power Supply -- 2.3.2 High-Power Capacitor -- 2.3.3 Switches -- 2.3.4 High-Voltage Pulse Generator -- 2.3.5 Treatment Chamber -- 2.4 Factors Affecting the Outcomes of Pulse Electric Field Treatment -- 2.4.1 Technological Factors -- 2.4.2 Biological Factors -- 2.4.3 Media Factors -- 2.5 Modeling of the Inactivation Rate -- 2.6 Application of Pulse Electric Field in Food Processing -- 2.6.1 Inactivation of Microorganisms -- 2.6.2 Processing of Milk -- 2.6.3 Processing of Eggs -- 2.6.4 Processing of Juice and Soaps -- 2.7 Conclusion -- References -- Chapter 3: Recent Advances in Ultrasound Processing of Food -- 3.1 Introduction -- 3.2 Ultrasonic Cutting -- 3.3 Microbial and Enzyme Inactivation -- 3.4 Extraction -- 3.5 Freezing -- 3.6 Dehulling -- 3.7 Drying -- 3.8 Ultrasonic or Sono-Emulsification/Homogenization.

3.9 Structural Modification -- 3.10 Tempering -- 3.11 Treatment of Food Industry Waste Water -- 3.12 Conclusion -- References -- Chapter 4: Osmotic Dehydration in Food Processing -- 4.1 Introduction -- 4.2 Principles of Osmotic Dehydration -- 4.3 Factors Affecting Osmotic Dehydration -- 4.3.1 Species and Variety -- 4.3.2 Shape and Size -- 4.3.3 Processing Conditions -- 4.3.4 Types of Osmotic Agents -- 4.3.5 Time and Temperature -- 4.3.6 Agitation and Sample-to-Solution Ratio -- 4.4 Mass Transfer Kinetics of Osmotic Dehydration -- 4.5 Mathematical Modeling of Osmotic Dehydration -- 4.6 Application of Osmotic Dehydration in Food Processing -- 4.7 Recent Advances in Osmotic Dehydration Preparation -- 4.7.1 Microwave Radiation -- 4.7.2 Pulsed Vacuum Impregnation -- 4.7.3 Ohmic Heating -- 4.7.4 Pulsed Electric Field -- 4.7.5 Ultrasonication -- 4.7.6 High Hydrostatic Pressure -- 4.7.7 Gamma Irradiation -- 4.7.8 Osmo-Dehydrofreezing -- 4.8 Research-Oriented Problems -- 4.9 Industrial Processing and Challenges -- 4.10 Conclusion -- References -- Chapter 5: Pulsed Light Technology Applied in Food Processing -- 5.1 Introduction -- 5.2 Mechanism and Critical Process Parameters of Pulsed Light -- 5.2.1 Design and Working of the PL System -- 5.2.2 Critical Process Parameters -- 5.2.2.1 Properties of a Sample -- 5.2.2.2 Target Microorganisms or Enzymes -- 5.2.2.3 Fluence and Associated Parameters -- 5.2.2.3.1 Treatment Time (Number of Pulses) and Sample Heating -- 5.2.2.3.2 Relative Position of the Sample and Distance from the Lamp -- 5.2.2.3.3 Voltage and Spectrum Distribution -- 5.2.2.3.4 Frequency and Peak Power -- 5.3 Literature Review on Photochemical, Photothermal, Photophysical, and Photo-Reactivation Mechanisms -- 5.3.1 Photochemical, Photothermal, and Photophysical -- 5.3.2 Photo-Reactivation.

5.4 Summary of PL-Related Studies of Liquid Foods Using Various Quality Parameters -- 5.4.1 Microbial Inactivation in Liquid Foods -- 5.4.2 Effect of PL Treatment on Enzymes -- 5.4.3 Effect of Pulsed Light on Color, Sensory, and Biochemical Attributes -- 5.4.4 PL in Combination with Other Technologies -- 5.5 Conclusion -- Acknowledgment -- References -- Chapter 6: Application of Membrane Technology in Food-Processing Industries -- 6.1 Introduction -- 6.1.1 Overview of the Membrane Process in Food Processing -- 6.1.1.1 Microfiltration (MF) -- 6.1.1.2 Ultrafiltration (UF) -- 6.1.1.3 Nanofiltration (NF) -- 6.1.1.4 Reverse Osmosis (RO) -- 6.1.1.5 Electrodialysis (ED) -- 6.1.1.6 Pervaporation (PV) -- 6.1.1.7 Membrane Distillation (MD) -- 6.1.1.8 Osmotic Distillation (OD) -- 6.1.1.9 Forward Osmosis (FO) -- 6.1.2 Membrane Materials for Food and Beverage Processing -- 6.2 Membrane Processes Used in Food Processing -- 6.2.1 Dairy Industries -- 6.2.1.1 Raw Milk Concentration and Processing -- 6.2.1.2 Removal and Reduction of Microbial Load (Cold Pasteurization) -- 6.2.1.3 Concentration of Milk -- 6.2.1.4 Fractionation and Separation of Milk Components -- 6.2.1.5 Cheese Processing -- 6.2.1.6 Whey Processing -- 6.2.1.6.1 Whey Protein Concentrate (WPC) -- 6.2.1.6.2 Whey Protein Demineralization -- 6.2.2 Beverage Industries -- 6.2.2.1 Non-Alcoholic Beverages -- 6.2.2.1.1 Fruit and Vegetable Juice -- 6.2.2.1.2 Sugarcane Processing -- 6.2.2.1.3 Tea and Coffee -- 6.2.2.2 Alcoholic Beverages -- 6.2.2.2.1 Clarification -- 6.2.2.2.2 Dealcoholization -- 6.2.3 Treatment of Waste Effluents Generated by Food Industries -- 6.2.3.1 Treatment of Waste Effluent Generated by Dairy Processing -- 6.2.3.2 Treatment of Wastewater Generated by Beverage Processing Industries -- 6.3 Challenges -- 6.3.1 Concentration Polarization -- 6.3.2 Membrane Fouling -- 6.3.2.1 Fouling Mechanisms.

6.3.2.2 Control and Reduction of Fouling -- 6.3.2.2.1 Hydrodynamic Management -- 6.3.2.2.2 Backflushing and Pulsing -- 6.3.2.2.3 Membrane Surface Modification -- 6.3.2.2.4 Feed Pre-Treatment -- 6.3.2.2.5 Effective Membrane Cleaning -- 6.4 Recent and Emerging Trends in Membrane Processes in the Food-Processing Industry -- 6.5 Conclusion -- References -- Chapter 7: Irradiation Technology for the Food Industry -- 7.1 Introduction -- 7.2 Working Principles -- 7.3 Objectives -- 7.4 Advantages and Disadvantages of Irradiation -- 7.5 Classification -- 7.6 Sources of Irradiation Used to Date -- 7.7 Impacts on Food and Environment -- 7.8 Legislation and Regulation -- 7.9 Industrial Set-Up and Challenges -- 7.9.1 Setting Up a γ-Ray-Based Irradiation Facility -- 7.9.2 Setting Up an X-Ray-Based Irradiation Facility -- 7.9.3 Setting Up an Electron Beam-Based Irradiation Facility -- 7.10 Issues and Challenges -- 7.10.1 Cost of Food -- 7.10.2 Consumer Awareness and Labeling -- 7.10.3 International Trade -- 7.10.4 Security Of Foods Being Irradiated -- 7.11 Economics -- 7.12 Future Trends -- 7.13 Concluding Remarks -- References -- Chapter 8: Cryogenic Freezing -- 8.1 Introduction -- 8.1.1 Liquid Cryogenic Agent Storage -- 8.1.2 Superconductivity -- 8.1.3 Superfluidity -- 8.1.4 Cryobiology -- 8.2 Food Freezing -- 8.2.1 Slow Freezing -- 8.2.2 Fast Freezing -- 8.3 Cryogenic Freezing -- 8.3.1 Advantages of Cryogenic Freezing of Food -- 8.4 Principles of Freezing -- 8.4.1 Freezing Time -- 8.4.2 Freezing Rate -- 8.4.3 Thermo-Mechanical Effects During Freezing and Heat Transfer During Cryogenic Freezing -- 8.5 Properties of Cryogenic Fluids -- 8.5.1 Liquid Nitrogen -- 8.6 Cryogenic Freezers -- 8.6.1 Tunnel and Spiral Freezers -- 8.6.2 Immersion Freezers -- 8.6.3 Cryogenic Impingement Freezers -- 8.6.4 Free-Flowing Freezers for Liquid Products.

8.6.5 Cryo-Mechanical Freezers -- 8.6.6 Process Freezer -- 8.6.7 Individual Quick-Freeze (IQF) Freezers -- 8.6.8 Plate Freezers -- 8.7 Quality of Cryogenically Frozen Products -- 8.7.1 Dehydration and Shrinkage -- 8.7.2 Microbiological Activity -- 8.7.3 Product Adhesion During Freezing -- 8.7.4 Recrystallization -- 8.7.5 Mechanical Damage (Freeze-Cracking) -- 8.8 Costs and Design Aspects -- 8.9 Alternative Cryogenic Technologies in Food Industry -- 8.10 Cryogenic Grinding -- 8.11 Health Hazards of Cryogenic Liquids -- 8.11.1 Safety Precautions -- 8.12 Scope of Cryogenic Science and Technology -- 8.13 Conclusions -- References -- Chapter 9: Nanofiltration: Principles, Process Modeling, and Applications -- 9.1 Introduction -- 9.2 Scope and Opportunities -- 9.3 Nanofiltration Membrane Materials and Preparation -- 9.4 Nanofiltration Modules -- 9.4.1 Flow Geometries -- 9.4.2 Membrane Characterization -- 9.4.3 Performance Parameters -- 9.4.3.1 Morphology Parameters -- 9.4.3.2 Charge Parameters -- 9.4.3.3 Membrane Charge and Species Transport -- 9.5 Nanofiltration Modeling -- 9.5.1 Theory -- 9.5.2 Model Categorization -- 9.5.2.1 Membrane-Dependent Semi-Empirical Model: Solution-Diffusion Model (SDM) -- 9.5.2.2 Phenomenological Models -- 9.5.2.2.1 Spiegler-Kedem Model -- 9.6 Applications -- 9.6.1 Nanofiltration in the Food Industry -- 9.6.2 Nanofiltration in Water Treatment -- 9.6.3 NF as a Pre-Treatment for Desalination -- 9.6.4 NF in Trace Contaminant Removal -- 9.7 Conclusions -- References -- Chapter 10: Atmospheric Pressure Non-Thermal Plasma in Food Processing -- 10.1 Background -- 10.2 Atmospheric Pressure Cold Plasma -- 10.3 Methods of APNTP Generation -- 10.4 Functionality of APNTP -- 10.4.1 Mechanism of Microbial Cells Inactivation Using APNTP -- 10.4.2 The Impact of APNTP on Physical Qualities of Food -- 10.4.2.1 Color -- 10.4.2.2 Texture.

10.4.2.3 Chemical Qualities.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Format:
Electronic Resources
Electronic Access:
Click here to view book
Publication Date:
2023
Publication Information:
Milton :

Taylor & Francis Group,

2023.

©2021.